scholarly journals Quantification of water erosion and characterization of surface sealing in Ultisols in semiarid areas in Brazil

DYNA ◽  
2021 ◽  
Vol 88 (217) ◽  
pp. 97-102
Author(s):  
Joez André de Moraes Rodrigues ◽  
Thais Emanuelle Monteiro dos Santos ◽  
Edivan Rodrigues de Souza ◽  
Marcelo Metri Corrêa ◽  
Brivaldo Gomes de Almeida ◽  
...  

The lack of cover is one of the main accelerators of soil degradation. Without protection and exposed to rainfall, the soil breaks the particles, causing surface sealing, making infiltration difficult. This study characterizes surface sealing and hydraulic erosion in Ultisols of the Alto Ipanema Basin. Eight erosion plots were established under the treatments: bare soil and soil with Brachiaria decumbens mulch. Three rain events were simulated at 24-hour intervals, with an intensity of 54.63 mmh-1. After each simulation, the surface micromorphology and the amount of soil lost were investigated. The use of mulch reduced runoff by 42% and the loss of soil and the rate of disaggregation was reduced by 70% on average. Infiltration was increased by 242%. Mulch was effective in preserving soil porosity and microstructure for the first simulated rainfall event (0 h), but was not observed in the second (24 h) and third (48 h) rainfall events.

2020 ◽  
Vol 1614 ◽  
pp. 012077
Author(s):  
L Khramtsova ◽  
M Leonteva ◽  
M Mobilia ◽  
A Longobardi ◽  
E Nasyrova ◽  
...  
Keyword(s):  

2016 ◽  
Author(s):  
Pietro Sabatino ◽  
Giuseppe Fedele ◽  
Antonio Procopio ◽  
Francesco Chiaravalloti ◽  
Salvatore Gabriele

Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 873
Author(s):  
Yakob Umer ◽  
Janneke Ettema ◽  
Victor Jetten ◽  
Gert-Jan Steeneveld ◽  
Reinder Ronda

Simulating high-intensity rainfall events that trigger local floods using a Numerical Weather Prediction model is challenging as rain-bearing systems are highly complex and localized. In this study, we analyze the performance of the Weather Research and Forecasting (WRF) model’s capability in simulating a high-intensity rainfall event using a variety of parameterization combinations over the Kampala catchment, Uganda. The study uses the high-intensity rainfall event that caused the local flood hazard on 25 June 2012 as a case study. The model capability to simulate the high-intensity rainfall event is performed for 24 simulations with a different combination of eight microphysics (MP), four cumulus (CP), and three planetary boundary layer (PBL) schemes. The model results are evaluated in terms of the total 24-h rainfall amount and its temporal and spatial distributions over the Kampala catchment using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) analysis. Rainfall observations from two gauging stations and the CHIRPS satellite product served as benchmark. Based on the TOPSIS analysis, we find that the most successful combination consists of complex microphysics such as the Morrison 2-moment scheme combined with Grell-Freitas (GF) and ACM2 PBL with a good TOPSIS score. However, the WRF performance to simulate a high-intensity rainfall event that has triggered the local flood in parts of the catchment seems weak (i.e., 0.5, where the ideal score is 1). Although there is high spatial variability of the event with the high-intensity rainfall event triggering the localized floods simulated only in a few pockets of the catchment, it is remarkable to see that WRF is capable of producing this kind of event in the neighborhood of Kampala. This study confirms that the capability of the WRF model in producing high-intensity tropical rain events depends on the proper choice of parametrization combinations.


2021 ◽  
Author(s):  
Ivan Dugan ◽  
Leon Josip Telak ◽  
Iva Hrelja ◽  
Ivica Kisić ◽  
Igor Bogunović

<p><strong>Straw mulch impact on soil properties and initial soil erosion processes in the maize field</strong></p><p>Ivan Dugan*, Leon Josip Telak, Iva Hrelja, Ivica Kisic, Igor Bogunovic</p><p>University of Zagreb, Faculty of Agriculture, Department of General Agronomy, Zagreb, Croatia</p><p>(*correspondence to Ivan Dugan: [email protected])</p><p>Soil erosion by water is the most important cause of land degradation. Previous studies reveal high soil loss in conventionally managed croplands, with recorded soil losses high as 30 t ha<sup>-1</sup> under wide row cover crop like maize (Kisic et al., 2017; Bogunovic et al., 2018). Therefore, it is necessary to test environmentally-friendly soil conservation practices to mitigate soil erosion. This research aims to define the impacts of mulch and bare soil on soil water erosion in the maize (Zea mays L.) field in Blagorodovac, Croatia (45°33’N; 17°01’E; 132 m a.s.l.). For this research, two treatments on conventionally tilled silty clay loam Stagnosols were established, one was straw mulch (2 t ha<sup>-1</sup>), while other was bare soil. For purpose of research, ten rainfall simulations and ten sampling points were conducted per each treatment. Simulations were carried out with a rainfall simulator, simulating a rainfall at an intensity of 58 mm h<sup>-1</sup>, for 30 min, over 0.785 m<sup>2</sup> plots, to determine runoff and sediment loss. Soil core samples and undisturbed samples were taken in the close vicinity of each plot. The results showed that straw mulch mitigated water runoff (by 192%), sediment loss (by 288%), and sediment concentration (by 560%) in addition to bare treatment. The bare treatment showed a 55% lower infiltration rate. Ponding time was higher (p < 0.05) on mulched plots (102 sec), compared to bare (35 sec), despite the fact that bulk density, water-stable aggregates, water holding capacity, and mean weight diameter did not show any difference (p > 0.05) between treatments. The study results indicate that straw mulch mitigates soil water erosion, because it immediately reduces runoff, and enhances infiltration. On the other side, soil water erosion on bare soil under simulated rainstorms could be high as 5.07 t ha<sup>-1</sup>, when extrapolated, reached as high as 5.07 t ha<sup>-1 </sup>in this study. The conventional tillage, without residue cover, was proven as unsustainable agro-technical practice in the study area.</p><p><strong>Key words: straw mulch, </strong>rainfall simulation, soil water erosion</p><p><strong>Acknowledgment</strong></p><p>This work was supported by Croatian Science Foundation through the project "Soil erosion and degradation in Croatia" (UIP-2017-05-7834) (SEDCRO).</p><p><strong>Literature</strong></p><p>Bogunovic, I., Pereira, P., Kisic, I., Sajko, K., Sraka, M. (2018). Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). Catena, 160, 376-384.</p><p>Kisic, I., Bogunovic, I., Birkás, M., Jurisic, A., Spalevic, V. (2017). The role of tillage and crops on a soil loss of an arable Stagnic Luvisol. Archives of Agronomy and Soil Science, 63(3), 403-413.</p>


2016 ◽  
Vol 78 (8-5) ◽  
Author(s):  
Mohd FakhrurazziIshak ◽  
Nazri Ali ◽  
Azman Kassim

This study provides an exploration of matric suction influenced by tree canopy interception on a single rainfall event. A field monitoring was carried out to measure matric suction at slope with two conditions; at toe of slope without tree and with a tree at toe of slope on a tropical residual soil. The variation in matric suction values and matric suction profiles response to the rainfall events on slope with and without a tree at toe were analysed to reveal the effect of the tree canopy. At initial condition, the matric suction was significantly higher at vicinity of tree compared to that of area without tree at toe of slope. However, a typical short and intense tropical rainfall has caused the matric suction to drop dramatically to a minimum value on slope without tree. This condition did not occur on slope with tree. Although, both slopes (with and without tree at toe) received the same amount of precipitation rainfall but the different responses in matric suction valueswere clearly shown at slope with tree at the slope toe. The short and intense rainfalls appeared to be the dominant factor to the suction variation at slope without tree, but not at slope with the tree. The tree canopy can be a factor to influence the suction variation at slope with tree as canopy interception reduced the amount of precipitation to the ground/sloping surface


2010 ◽  
Vol 17 (5) ◽  
pp. 371-381 ◽  
Author(s):  
N. Malik ◽  
N. Marwan ◽  
J. Kurths

Abstract. Precipitation during the monsoon season over the Indian subcontinent occurs in form of enormously complex spatiotemporal patterns due to the underlying dynamics of atmospheric circulation and varying topography. Employing methods from nonlinear time series analysis, we study spatial structures of the rainfall field during the summer monsoon and identify principle regions where the dynamics of monsoonal rainfall is more coherent or homogenous. Moreover, we estimate the time delay patterns of rain events. Here we present an analysis of two separate high resolution gridded data sets of daily rainfall covering the Indian subcontinent. Using the method of event synchronization (ES), we estimate regions where heavy rain events during monsoon happen in some lag synchronised form. Further using the delay behaviour of rainfall events, we estimate the directionalities related to the progress of such type of rainfall events. The Active (break) phase of a monsoon is characterised by an increase(decrease) of rainfall over certain regions of the Indian subcontinent. We show that our method is able to identify regions of such coherent rainfall activity.


2017 ◽  
Vol 21 (2) ◽  
pp. 963-980 ◽  
Author(s):  
Vojtěch Svoboda ◽  
Martin Hanel ◽  
Petr Máca ◽  
Jan Kyselý

Abstract. Characteristics of rainfall events in an ensemble of 23 regional climate model (RCM) simulations are evaluated against observed data in the Czech Republic for the period 1981–2000. Individual rainfall events are identified using the concept of minimum inter-event time (MIT) and only heavy events (15 % of events with the largest event depths) during the warm season (May–September) are considered. Inasmuch as an RCM grid box represents a spatial average, the effects of areal averaging of rainfall data on characteristics of events are investigated using the observed data. Rainfall events from the RCM simulations are then compared to those from the at-site and area-average observations. Simulated number of heavy events and seasonal total precipitation due to heavy events are on average represented relatively well despite the higher spatial variation compared to observations. RCM-simulated event depths are comparable to the area-average observations, while event durations are overestimated and other characteristics related to rainfall intensity are significantly underestimated. The differences between RCM-simulated and at-site observed rainfall event characteristics are in general dominated by the biases of the climate models rather than the areal-averaging effect. Most of the rainfall event characteristics in the majority of the RCM simulations show a similar altitude-dependence pattern as in the observed data. The number of heavy events and seasonal total precipitation due to heavy events increase with altitude, and this dependence is captured better by the RCM simulations with higher spatial resolution.


2020 ◽  
Vol 13 (3) ◽  
pp. 1117
Author(s):  
Julio Caetano Tomazoni ◽  
Ana Paula Vansan

Este trabalho tem como objetivo avaliar a erosão hídrica laminar do solo, por meio da Equação Universal de Perdas de Solos Revisada (RUSLE) na bacia hidrográfica do rio São José, localizada no município de Francisco Beltrão (PR).  A perda de solo média anual (A) foi determinada através da RUSLE para os anos 2000, 2005, 2009, 2015 e 2017 utilizando-se técnicas de geoprocessamento com o auxílio do software ArcGis 10.0. O fator erosividade da chuva (R) foi determinado utilizando-se dados pluviométricos correspondentes ao período de 1974 a 2016. O fator erodibilidade do solo (K) foi obtido através da análise de amostras de solo coletadas in loco. O fator topográfico (LS) foi estimado por meio dos dados altimétricos e hidrográficos da bacia. Os fatores de uso e manejo do solo (C) e de práticas conservacionistas do solo (P) foram determinados por meio da caracterização multitemporal do uso e ocupação do solo, através de imagens de satélite. O potencial natural de erosão (PNE) foi determinado pela multiplicação dos fatores R, K e LS.A estimativa de perda de solo (A) foi determinada pela multiplicação do PNE pelos fatores C e P.  Use of Geoprocessing Techniques to Study Laminar Water Erosion in Watershed of Southwest Paraná A B S T R A C TThe objective of this work is evaluate the soil erosion by the Universal Equation of Soil Losses Revised (RUSLE) in the São José river basin, located in the municipality of Francisco Beltrão (PR). The average annual soil loss (A) was determined through RUSLE for the years 2000, 2005, 2009, 2015 and 2017 using geoprocessing techniques with ArcGis 10.0 software. Rainfallerosivity (R) was determined using rainfall data from 1974 to 2016, being determined at 11521.26 11521,26 MJ.mm.ha-1.h-1.year-1. The soil erodibility factor (K) was obtained through the analysis of soil samples collected on the spot (0,03018 t.ha.h/ha.MJ.mm, 0,02771 t.ha.h/ha.MJ.mm e 0,02342 t.ha.h/ha.MJ.mm). The topographic factor (LS) was estimated by the altimetric and hydrographic data of the basin. Soil use and management (C) and soil conservation (P) were determined through multitemporal characterization of land use and occupation, using satellite images. The natural erosion potential (NEP) was determined by multiplying the R, K and LS factors, with more than half of the total area of the watershed with very strong PNE. The soil loss estimate (A) was determined by multiplying the NEP by factors C and P with predominance of the class called low (0 to 10 t/ha/year) denoting the reduction of erosion rates through factors C and P, helping to protect the soil from the erosion process.Key words: Soil Erosion; Watershed, Revised Universal Soil Loss Equation, Geoprocessing, Software.


2011 ◽  
Vol 11 (3) ◽  
pp. 751-757 ◽  
Author(s):  
O. G. Terranova ◽  
P. Iaquinta

Abstract. Temporal properties of 152 575 rainfall events, recorded at time steps of 5 min, having different durations and occurring between 1989 and 2008 at 155 localities of Calabria (Italy), have been analysed in this paper. Samples from 45 533 storms have been selected to classify rainfall events as "significant" with regard to their contribution to soil erosion, flooding and/or other geo-hydrological processes. The samples are representative of a wide variety of situations in terms of duration, total rainfall, intensity, etc. The use of standardized rainfall profiles (SRP) is proposed to describe the within-storm temporal pattern. The main attraction of this method lies in the fact that it is based on actual data of regional precipitation. Its weak point is that large samples of data are required to obtain regional profiles. The research necessities for improving the use of Huff curves for storm disaggregation and its the potential use are summarized in this paper on the basis of the specific literature. A new criterion – based on the comparison of the areas A1, A2, A3 and A4 that underlie the four 25% of durations of a given SRP, and the corresponding four values of the "uniform" SRP (USRP), is suggested here with the aim of improving the use of the information content of SRP. Some interesting results concerning the sample frequency and the characterization of parameters for hydrological applications are commented on. The study conducted so far has produced important, albeit preliminary, results for different contexts of Calabria concerning the use of SRP among the methods for constructing design storm hyetographs.


Sign in / Sign up

Export Citation Format

Share Document