scholarly journals Wheat physiological traits response in standard and ecological agricultural systems

2021 ◽  
Vol 25 (1) ◽  
pp. 131-136
Author(s):  
Hamid Fateh ◽  
Ahmad Toube ◽  
Abdul Qayum Gholipuri

This research was conducted on a farm of Payam-e-Noor University in Piranshahr, in West Azerbaijan province of Iran, during 2014-2015 and 2015-2016 crop sessions to investigate the wheat physiological traits response to standard and ecological agricultural systems. The experiment was conducted as a split-plot design with two factors and three replications. The first factor, which was considered the main plot, included high, low-input, and ecological agricultural systems. Subplots were seed pre-treatment, including control (without priming), hydro priming, and food priming with ascorbate. The results showed that the least photosynthesis rate and mesophilic conductance were related to low-input agricultural system; however, in the ecological system, the transpiration, substomatal carbon dioxide, and water use efficiency of photosynthesis were the lowest. Also, seed priming increased the photosynthesis rate, mesophilic conductivity, and water use efficiency of photosynthesis.

2005 ◽  
Vol 277-279 ◽  
pp. 528-535
Author(s):  
Oh Hyun Kyung ◽  
Yeonsook Choung

The response of Quercus mongolica, one of the major tree species in Northeast Asia and the most dominant deciduous tree in Korea, was studied in relation to elevated CO2 and the addition of nitrogen to soil in terms of its physiology and growth over two years. Plants were grown from seed at two CO2 conditions (ambient and 700 µL L-1) and with two levels of soil nitrogen supply (1.5 mM and 6.5 mM). Elevated CO2 was found to significantly enhance the photosynthesis rate and water use efficiency by 2.3-2.7 times and by 1.3-1.8 times, respectively. Over time within a growing season, there was a decreasing trend in the photosynthesis rate. However, the decrease was slower especially in two-year-old seedlings grown in elevated CO2 and high nitrogen conditions, suggesting that their physiological activity lasted relatively longer. Improved photosynthesis and water use efficiency as well as prolonged physiological activity under high CO2 condition resulted in an increase in biomass accumulation. That is, in elevated CO2, total biomass increased by 1.7 and 1.2 times, respectively, for one- and two-year-old seedlings with low nitrogen conditions, and by 1.8 and 2.6 times with high nitrogen conditions. This result indicates that the effect of CO2 on biomass is more marked in high nitrogen conditions. This, therefore, shows that the effect of CO2 is accelerated by the addition of nitrogen. With the increase in total biomass, the number of leaves and stem diameter increased significantly, and more biomass was allocated in roots, resulting in structural change. Overall, the elevated CO2 markedly stimulated the physiology and growth of Q. mongolica. This demonstrates that Q. mongolica is capable of exploiting an elevated CO2 environment. Therefore, it will remain a dominant species and continue to be a major CO2 sink in the future, even though other resources such as nitrogen can modify the CO2 effect.


2021 ◽  
Author(s):  
Fasih Ullah Haider ◽  
Muhammad Farooq ◽  
Muhammad Naveed ◽  
Sardar Alam Cheema ◽  
Noor ul Ain ◽  
...  

Abstract The synergistic effects of biochar and microorganisms on the adsorption of Cd and on cereal plant physiology remained unclear. Therefore, this experiment was performed to evaluate the combined effects of biochar pyrolyzed from (maize-straw (BC1), cow-manure (BC2), and poultry-manure (BC3), and microorganisms including (T. harzianum L. and B. subtilis L.), to evaluate, how incorporation of biochar positively influences microorganisms growth and nutrients uptake in plant, and how it mitigates under various Cd-stress levels (0, 10, and 30ppm). Cd2 (30 ppm) had the highest reduction in the intercellular CO2, SPAD value, transpiration rate, water use efficiency, stomatal conductance, and photosynthesis rate, which were 22.36, 34.50, 40.45, 20.66, 29.07, and 22.41% respectively lower than control Cd0 (0 ppm). Sole application BC, resulted in enhanced intercellular CO2, SPAD value, transpiration rate, water use efficiency, stomatal conductance, and photosynthesis rate were recorded in BC2, which were 7.27, 20.54, 23.80, 5.96, 13.37, and 13.50% respectively greater as compared to control and decreased the Cd-concentration in root and shoot of maize by 34.07 and 32.53%, respectively as compared to control. Similarly, among sole microorganism’s inoculation, minimized the Cd-concentration in shoot, root, and soil by 23.77, 20.15, and 10.35% respectively than control. These results suggested that integrated application of cow manure biochar BC2 and inoculation of microorganisms MI3 as soil amendments had synergistic effects in improving the adsorption of nutrients and decreasing the Cd-uptake in maize, and enhancing the physiology of plant grown in Cd-polluted soils as opposed to using either biochar or inoculating microorganisms alone.


Author(s):  
M. N. Arun ◽  
S. Shankara Hebbar ◽  
K. Bhanuprakas ◽  
T. Senthivel

A split plot design field study was conducted during summer month of 2012 and 2013 at the vegetable block of Indian Institute of Horticultural Research in Bangalore, India to evaluate if priming could improve grain yield and water use efficiency of cowpea under limited water supply condition through drip system. Seeds of cultivar Arka garima received the following priming treatments: they were soaked in GA3,Calcium Chloride, Ammonium Molybdate, Potassium Bromide, Magnesium Nitrate, Zinc Sulphate solutions, and aerated distil water (hydropriming) for 24 hours at 15o C. Crops were subjected to three irrigation intervals in which the irrigation was applied at 0.9, 0.7, 0.5 Epan Replenishment of evaporation. Seed priming treatments reduced the mean emergence time, promoted germination, early canopy development and flower initiation in comparison to the untreated control. Plant height, number of branches, total dry matter accumulation, number of pods per plant, number of seeds per pod, 1000 seed weight and grain and biological yield, harvest index and irrigation water use efficiency increased by different priming treatments. Seed priming increased the irrigation water use efficiency (IWUE) of all irrigation regimes. Grain yields linearly increased at 0.9 Epan Replenishment while maximum IWUE was achieved at 0.5 Epan Replenishment. Results suggest that the use of seed priming with either GA3 (100ppm) or Ammonium Molybdate (10-3 M) for 24 hours at low concentration can be helpful in cowpea under both optimum as well as limited water conditions.


2013 ◽  
Vol 14 ◽  
pp. 65-77
Author(s):  
Dipendra Pokhrel ◽  
Kiran Baral ◽  
Bishnu R Ojha ◽  
Surya K Ghimirey ◽  
Madhav P Pandey

Wheat crop in developing world including Nepal is grown under rainfed condition and thus face moisture stress at one or more growth stages limiting grain yield. An experiment was conducted at Greenhouse to screen the 60 different genotypes of wheat including Nepalese landraces, commercial cultivars CIMMYT derived advanced lines, NWRP derived advanced lines, and three international drought tolerant check cultivars. The wheat genotypes were grown in pots (single plant) arranged in a replicated split plot design under two contrasting moisture regimes, optimum and moisture stressed. The genotypes were evaluated for water use, water use efficiency, plant height, number of tillers and biomass production. The analysis revealed significant variance between environments and among the wheat genotypes for most of these traits. A wide range of variability was observed for water use, water use efficiency, days to anthesis, plant height, number of tillers and biomass yield in both moisture stressed and non stressed environments. Gautam showed superiority than Bhrikuti and Vijaya among Nepalese cultivar for drought adaptive physiological traits. Landrace NPGR 7504 showed high level of water use efficiency and other positive traits for drought adaptation.


Sign in / Sign up

Export Citation Format

Share Document