Investigating the Visible Spectra of Coloured Diamonds

1979 ◽  
Vol 16 (7) ◽  
pp. 433-447 ◽  
Author(s):  
Kenneth Scarratt
Keyword(s):  
1977 ◽  
Vol 38 (10) ◽  
pp. 1293-1299 ◽  
Author(s):  
U. Giorgianni ◽  
G. Mondio ◽  
P. Perillo ◽  
G. Saitta ◽  
G. Vermiglio
Keyword(s):  

2002 ◽  
Vol 722 ◽  
Author(s):  
Ram W. Sabnis ◽  
Mary J. Spencer ◽  
Douglas J. Guerrero

AbstractNovel organic, polymeric materials and processes of depositing thin films on electronics substrates by chemical vapor deposition (CVD) have been developed and the lithographic behavior of photoresist coated over these CVD films at deep ultraviolet (DUV) wavelength has been evaluated. The specific monomers synthesized for DUV applications include [2.2](1,4)- naphthalenophane, [2.2](9,10)-anthracenophane and their derivatives which showed remarkable film uniformity on flat wafers and conformality over structured topography wafers, upon polymerization by CVD. The chemical, physical and optical properties of the deposited films have been characterized by measuring parameters such as thickness uniformity, solubility, conformality, adhesion to semiconductor substrates, ultraviolet-visible spectra, optical density, optical constants, defectivity, and resist compatibility. Scanning electron microscope (SEM) photos of cross-sectioned patterned wafers showed verticle profiles with no footing, standing waves or undercut. Resist profiles down to 0.10 νm dense lines and 0.09 νm isolated lines were achieved in initial tests. CVD coatings generated 96-100% conformal films, which is a substantial improvement over commercial spin-on polymeric systems. The light absorbing layers have high optical density at 248 nm and are therefore capable materials for DUV lithography applications. CVD is a potentially useful technology to extend lithography for sub-0.15 νm devices. These films have potential applications in microelectronics, optoelectronics and photonics.


2019 ◽  
Author(s):  
Chem Int

Novel acyclic and cyclic merocyanine dyes derived from the nucleu of furo [(3,2-d) pyrazole; ( d 2 , 3 )imidazole]were prepared. The electronic visible absorptionspectra of all the synthesized new cyanine dyes were examined in 95% ethanolsolution to evaluate their photosensitization properties. Antibacterial andantifungal activities for some selected dyes were tested against various bacterialand fungal strains (Escherichia coli, Staphylococcus aureus, Aspergillus flavus andCandida albicans) to evaluate their antimicrobial activity. Structural identificationwas carried out via elemental analysis, visible spectra, IR and 1H NMRspectroscopic data.


2003 ◽  
Vol 3 (1-2) ◽  
pp. 351-357
Author(s):  
S. Le Bonté ◽  
M.-N. Pons ◽  
O. Potier ◽  
S. Chanel ◽  
M. Baklouti

An adaptive principal component analysis applied to sets of data provided by global analytical methods (UV-visible spectra, buffer capacity curves, respirometric tests) is proposed as a generic procedure for on-line and fast characterization of wastewater. The data-mining procedure is able to deal with a large amount of information, takes into account the normal variations of wastewater composition related to human activity, and enables a rapid detection of abnormal situations such as the presence of toxic substances by comparison of the actual wastewater state with a continuously updated reference. The procedure has been validated on municipal wastewater.


1997 ◽  
Vol 480 (2) ◽  
pp. 767-776 ◽  
Author(s):  
R. Paul Butler ◽  
Roger A. Bell

2021 ◽  
Vol 10 (1) ◽  
pp. 101-111
Author(s):  
Rehman Ullah ◽  
Sumaira Shah ◽  
Zahir Muhammad ◽  
Sajjad Ali Shah ◽  
Shah Faisal ◽  
...  

Abstract The current study was designed to investigate the potential of Euphorbia wallichii shoot extract for reducting Au3+ and stabilizing gold nanoparticles. UV-visible spectra of gold nanoparticles showed obvious surface plasmon resonance peak at 548 nm. Microscopy (SEM and TEM) showed spherical dimensions, and the energy dispersive X-ray spectra displayed the strongest optical absorption peak for gold (Au) at 2.1 keV. Dynamic light scattering spectra represent polydispersed mixture with particulate diameter of 2.5–103.2 nm. The IR spectra confirm the potential functional groups of shoot extract responsible for the reduction of Au3+ to gold nanoparticles which exhibit tremendous antibacterial potential of 76.31%, 68.47%, 79.85%, 48.10%, and 65.53% against Escherichia coli, Staphylococcus aureus, Bacillus pumilus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, respectively. Gold nanoparticles showed markedly elevated fungicidal potency compared to the shoot extract alone against the tested fungal strains. IC50 for 2,2-diphenyl-1-picrylhydrazyl scavenging was 31.52, 18.29, and 15.32 µg/mL at 30, 60, and 90 min of reaction time, respectively. Both shoot extract and nanoparticles revealed 71% mortality at 100 µg/mL, with LD90 values of 310.56 µg/mL. Experimental mice acquired dose-dependent analgesia of 54.21%, 82.60%, and 86.53% when treated with gold nanoparticles at 50, 100, and 200 mg/kg bw. Inhibition of gastrointestinal muscular contraction was 21.16%, 30.49%, and 40.19% in mice feed with 50, 100, and 200 mg/kg bw, respectively.


1968 ◽  
Vol 46 (22) ◽  
pp. 3443-3446 ◽  
Author(s):  
D. A. Edwards ◽  
R. N. Hayward

Some anhydrous transition metal acetates (Mn(II), Co(II), Cu(II), Ni(II), Zn(II), Ag(I), Mo(II), Ce(III), La(III)) have been prepared and their infrared spectra measured in the solid state. The infrared spectra have been related to established modes of bonding of the acetate group to metals. Thermal decompositions of the anhydrous acetates have been investigated by thermogravimetric analysis; magnetic moments and visible spectra have been measured.


1998 ◽  
Vol 58 (6) ◽  
pp. 599-604 ◽  
Author(s):  
E Träbert ◽  
P Beiersdorfer ◽  
S B Utter ◽  
J R Crespo López-Urrutia

Sign in / Sign up

Export Citation Format

Share Document