scholarly journals Empirical and physics-based approaches to estimate states of lithium-ion battery

Author(s):  
Anna A. Fedorova

Lithium-ion batteries are integral parts of our life due to the rapid increase of applications which require batteries for their exploitation. Thus, there is a market demand to produce lithium-ion batteries for a huge number of applications from electric vehicles to energy storages. Battery Management System (BMS) is developed to maintain safe battery exploitation conditions. Most BMSs are embedded systems that have physical memory limits. Therefore, battery model should be easy to simulate to be integrated into BMS for states estimation. In the present paper we intend to compare empirical and physics-based approaches to estimate lithium-ion battery states with respect to their possibility of implementation in the embedded system. We will use Kalman filter to estimate battery states by means of the mentioned models.

Electronics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 394 ◽  
Author(s):  
Qi Zhang ◽  
Yan Li ◽  
Yunlong Shang ◽  
Bin Duan ◽  
Naxin Cui ◽  
...  

Accurate battery models are integral to the battery management system and safe operation of electric vehicles. Few investigations have been conducted on the influence of current rate (C-rate) on the available capacity of the battery, for example, the kinetic battery model (KiBaM). However, the nonlinear characteristics of lithium-ion batteries (LIBs) are closer to a fractional-order dynamic system because of their electrochemical materials and properties. The application of fractional-order models to represent physical systems is timely and interesting. In this paper, a novel fractional-order KiBaM (FO-KiBaM) is proposed. The available capacity of a ternary LIB module is tested at different C-rates, and its parameter identifications are achieved by the experimental data. The results showed that the estimated errors of available capacity in the proposed FO-KiBaM were low over a wide applied current range, specifically, the mean absolute error was only 1.91%.


2014 ◽  
Vol 494-495 ◽  
pp. 246-249
Author(s):  
Cheng Lin ◽  
Xiao Hua Zhang

Based on the genetic algorithm (GA), a novel type of parameters identification method on battery model was proposed. The battery model parameters were optimized by genetic optimization algorithm and the other parameters were identified through the hybrid pulse power characterization (HPPC) test. Accuracy and efficiency of the battery model were validated with the dynamic stress test (DST). Simulation and experiment results shows that the proposed model of the lithium-ion battery with identified parameters was accurate enough to meet the requirements of the state of charge (SoC) estimation and battery management system.


2020 ◽  
Author(s):  
Wu-Yang Sean ◽  
Ana Pacheco

Abstract For reusing automotive lithium-ion battery, an in-house battery management system is developed. To overcome the issues of life cycle and capacity of reused battery, an online function of estimating battery’s internal resistance and open-circuit voltage based on adaptive control theory are applied for monitoring life cycle and remained capacity of battery pack simultaneously. Furthermore, ultracapacitor is integrated in management system for sharing peak current to prolong life span of reused battery pack. The discharging ratio of ultracapacitor is adjusted manually under Pulse-Width-Modulation signal in battery management system. In case study in 52V LiMnNiCoO2 platform, results of estimated open-circuit voltage and internal resistances converge into stable values within 600(s). These two parameters provide precise estimation for electrical capacity and life cycle. It also shows constrained voltage drop both in the cases of 25% to 75% of ultracapacitors discharging ratio compared with single battery. Consequently, the Life-cycle detection and extending functions integrated in battery management system as a total solution for reused battery are established and verified.


2021 ◽  
Vol 2089 (1) ◽  
pp. 012017
Author(s):  
Ramu Bhukya ◽  
Praveen Kumar Nalli ◽  
Kalyan Sagar Kadali ◽  
Mahendra Chand Bade

Abstract Now a days, Li-ion batteries are quite possibly the most exceptional battery-powered batteries; these are drawing in much consideration from recent many years. M Whittingham first proposed lithium-ion battery technology in the 1970s, using titanium sulphide for the cathode and lithium metal for the anode. Li-ion batteries are the force to be reckoned with for the advanced electronic upset in this cutting-edge versatile society, solely utilized in cell phones and PC computers. A battery is a Pack of cells organized in an arrangement/equal association so the voltage can be raised to the craving levels. Lithium-ion batteries, which are completely utilised in portable gadgets & electric vehicles, are the driving force behind the digital technological revolution in today’s mobile societies. In order to protect and maintain voltage and current of the battery with in safe limit Battery Management System (BMS) should be used. BMS provides thermal management to the battery, safeguarding it against over and under temperature and also during short circuit conditions. The battery pack is designed with series and parallel connected cells of 3.7v to produce 12v. The charging and releasing levels of the battery pack is indicated by interfacing the Arduino microcontroller. The entire equipment is placed in a fiber glass case (looks like aquarium) in order to protect the battery from external hazards to design an efficient Lithium-ion battery by using Battery Management System (BMS). We give the supply to the battery from solar panel and in the absence of this, from a regular AC supply.


2019 ◽  
Vol 68 (5) ◽  
pp. 4110-4121 ◽  
Author(s):  
Rui Xiong ◽  
Yongzhi Zhang ◽  
Ju Wang ◽  
Hongwen He ◽  
Simin Peng ◽  
...  

Author(s):  
Shi Zhao ◽  
Adrien M. Bizeray ◽  
Stephen R. Duncan ◽  
David A. Howey

Fast and accurate state estimation is one of the major challenges for designing an advanced battery management system based on high-fidelity physics-based model. This paper evaluates the performance of a modified extended Kalman filter (EKF) for on-line state estimation of a pseudo-2D thermal-electrochemical model of a lithium-ion battery under a highly dynamic load with 16C peak current. The EKF estimation on the full model is shown to be significantly more accurate (< 1% error on SOC) than that on the single-particle model (10% error on SOC). The efficiency of the EKF can be improved by reducing the order of the discretised model while maintaining a high level of accuracy. It is also shown that low noise level in the voltage measurement is critical for accurate state estimation.


Sign in / Sign up

Export Citation Format

Share Document