Quasi-Static Fracture Height Growth in Laminated Reservoirs: Impacts of Stress and Toughness Barriers, Horizontal Well Landing Depth, and Fracturing Fluid Density

Author(s):  
Mehran Mehrabi ◽  
Yanli Pei ◽  
Mahdi Haddad ◽  
Farzam Javadpour ◽  
Kamy Sepehrnoori
2021 ◽  
Author(s):  
Abu M. Sani ◽  
Hatim S. AlQasim ◽  
Rayan A. Alidi

Abstract This paper presents the use of real-time microseismic (MS) monitoring to understand hydraulic fracturing of a horizontal well drilled in the minimum stress direction within a high-temperature high-pressure (HTHP) tight sandstone formation. The well achieved a reservoir contact of more than 3,500 ft. Careful planning of the monitoring well and treatment well setup enabled capture of high quality MS events resulting in useful information on the regional maximum horizontal stress and offers an understanding of the fracture geometry with respect to clusters and stage spacing in relation to fracture propagation and growth. The maximum horizontal stress based on MS events was found to be different from the expected value with fracture azimuth off by more than 25 degree among the stages. Transverse fracture propagation was observed with overlapping MS events across stages. Upward fracture height growth was dominant in tighter stages. MS fracture length and height in excess of 500 ft and 100 ft, respectively, were created for most of the stages resulting in stimulated volumes that are high. Bigger fracture jobs yielded longer fracture length and were more confined in height growth. MS events fracture lengths and heights were found to be on average 1.36 and 1.30 times, respectively, to those of pressure-match.


2012 ◽  
Vol 27 (01) ◽  
pp. 8-19 ◽  
Author(s):  
M. Kevin Fisher ◽  
Norman R. Warpinski

2022 ◽  
Author(s):  
Martin Rylance ◽  
Yaroslav Korovaychuk

Abstract For as long as we have been performing hydraulic fracturing, we have been trying to ensure that we stay out of undesirable horizons, potentially containing water and/or gas. The holy grail of hydraulic fracturing, an absolute control of created fracture height, has eluded the industry for more than 70 years. Of course, there have been many that have claimed solutions, but all the marketed approaches have at best merely created a delay to the inevitable growth and at worst been a snake-oil approach with little actual merit. Fundamentally, the applied techniques have attempted to delay or influence the underlying equations of net-pressure and stress variation; but having to ultimately honour them and by doing so then condemned themselves to limited success or outright failure. Fast forward to 2020, and a reassessment of the relative importance of height-growth constraint and what may have changed to help us achieve this. The development of unconventionals are focused on creating as much surface area as possible in micro/nano-Darcy environments, across almost any phase, but with typically poor line of sight to profit. However, the more valuable business of conventional oil and gas is working in thinner and thinner reservoirs with an often-deteriorating permeability, but with a significantly higher potential economic return. What unconventional has successfully delivered however, is a rapid deployment and acceleration in a range of completion technologies that were unavailable just a few years ago. We will demonstrate that these technologies potentially offer the capability of finally being able to control fracture height-growth. Consideration of a range of previously applied height-growth approaches will demonstrate how they attempted to fool or fudge height growth creation mechanisms. With this clarity, we can consider what advances in completion technology may offer in terms of delivering height growth control. We suggest that with the technology and approaches that are currently available today, that height-growth control is finally within reach. We will go on to describe a multi-well Pilot program, in deployment and execution in 2020/021 in Western Siberia; where billions of barrels remain to be recovered in thin oil-rim, low permeability sandstone reservoirs below gas or above water. A comprehensive assessment of the myriad of height-growth approaches that have been utilized over the last 70 years was performed, but in each case demonstrated the fallibility and limitations of each of these. However, rather than the interpretation that such control is not achievable, instead we will show a mathematically sound approach, along with field data and evidence that this is possible. The presentation will demonstrate that completion advances over the last 10 - 15 years make this approach a reality in the present day; and that broader field implementation is finally within reach.


SPE Journal ◽  
2019 ◽  
Vol 24 (05) ◽  
pp. 2148-2162 ◽  
Author(s):  
Pengcheng Fu ◽  
Jixiang Huang ◽  
Randolph R. Settgast ◽  
Joseph P. Morris ◽  
Frederick J. Ryerson

Summary The height growth of a hydraulic fracture is known to be affected by many factors that are related to the layered structure of sedimentary rocks. Although these factors are often used to qualitatively explain why hydraulic fractures usually have well–bounded height growth, most of them cannot be directly and quantitatively characterized for a given reservoir to enable a priori prediction of fracture–height growth. In this work, we study the role of the “roughness” of in–situ–stress profiles, in particular alternating low and high stress among rock layers, in determining the tendency of a hydraulic fracture to propagate horizontally vs. vertically. We found that a hydraulic fracture propagates horizontally in low–stress layers ahead of neighboring high–stress layers. Under such a configuration, a fracture–mechanics principle dictates that the net pressure required for horizontal growth of high–stress layers within the current fracture height is significantly lower than that required for additional vertical growth across rock layers. Without explicit consideration of the stress–roughness profile, the system behaves as if the rock is tougher against vertical propagation than it is against horizontal fracture propagation. We developed a simple relationship between the apparent differential rock toughness and characteristics of the stress roughness that induce equivalent overall fracture shapes. This relationship enables existing hydraulic–fracture models to represent the effects of rough in–situ stress on fracture growth without directly representing the fine–resolution rough–stress profiles.


2019 ◽  
Vol 38 (2) ◽  
pp. 533-554
Author(s):  
Dong Xiao ◽  
Yingfeng Meng ◽  
Xiangyang Zhao ◽  
Gao Li ◽  
Jiaxin Xu

Gravity displacement often occurs when drilling a vertical fractured formation, causing a downhole complexity with risk of blowout and reservoir damage, well control difficulty, drilling cycle prolongation, and increased costs. Based on an experimental device created for simulating the gravity displacement, various factors affecting the displacement quantity were quantitatively evaluated by simulating the fracture width, asphalt viscosity, drilling fluid density, and viscosity under different working conditions, and a liquid–liquid displacement law was obtained. Using the theories of rock mechanics, fluid mechanics, and seepage mechanics, based on conformal mapping, as well as a fracture-pore double substrate fluid flow model, we established a steady-state mathematical model of fractured formation liquid–liquid gravity displacement by optimizing the shape factors and using a combination of gravity displacement experiments to verify the feasibility of the mathematical model. We analyzed the influence of drilling fluid density, fracture height and length, and asphalt viscosity on displacement rate, and obtained the corresponding laws. The results show that when the oil–fluid interface is stable, the fracture width is the most important factor affecting the gravity displacement, and plugging is the most effective means of managing gravity displacement.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1129 ◽  
Author(s):  
Na Wei ◽  
Yang Liu ◽  
Zhenjun Cui ◽  
Lin Jiang ◽  
Wantong Sun ◽  
...  

Horizontal well drilling is a highly effective way to develop marine gas hydrate. During the drilling of horizontal wells in the marine gas hydrate layer, hydrate particles and cutting particles will migrate with the drilling fluid in the horizontal annulus. The gravity of cuttings is easy to deposit in the horizontal section, leading to the accumulation of cuttings. Then, a cuttings bed will be formed, which is not beneficial to bring up cuttings and results in the decrease of wellbore purification ability. Then the extended capability of the horizontal well will be restricted and the friction torque of the drilling tool will increase, which may cause blockage of the wellbore in severe cases. Therefore, this paper establishes geometric models of different hole enlargement ways: right-angle expansion, 45-degree angle expansion, and arc expanding. The critical velocity of carrying rock plates are obtained by EDEM and FLUENT coupling simulation in different hydrate abundance, different hydrate-cuttings particle sizes and different drilling fluid density. Then, the effects of hole enlargement way, particle size, hydrate abundance and drilling fluid density on rock carrying capacity are analyzed by utilizing an orthogonal test method. Simulation results show that: the critical flow velocity required for carrying cuttings increases with the increase of the particle size of the hydrate-cuttings particle when the hydrate abundance is constant. The critical flow velocity decreases with the increase of drilling fluid density, the critical flow velocity carrying cuttings decreases with the increase of hydrate abundance when the density of the drilling fluid is constant. Orthogonal test method was used to evaluate the influence of various factors on rock carrying capacity: hydrate-cuttings particle size > hole enlargement way > hydrate abundance > drilling fluid density. This study provides an early technical support for the construction parameter optimization and well safety control of horizontal well exploitation models in a marine natural gas hydrate reservoir.


Sign in / Sign up

Export Citation Format

Share Document