Land-use Change Assessment by Permanent Sample Plots in National Forest Inventory

2015 ◽  
Vol 6 (1) ◽  
pp. 33 ◽  
Author(s):  
Jong-Su Yim ◽  
Rae Hyun Kim ◽  
Sun Jeoung Lee ◽  
Yeong Mo Son
2020 ◽  
Author(s):  
Linards Ludis Krumsteds ◽  
Janis Ivanovs ◽  
Andis Lazdins ◽  
Raitis Melniks

<p><strong>Abstract.</strong> Calculation of land use and land use change matrix is one of the key elements for the national greenhouse gas (GHG) inventory in land use, land use change and forestry (LULUCF) sector. Main purpose of the land use and land use change matrix is to present comprehensive and harmonized land use and land use change information nationwide over certain time period. Information on land use and land use changes is further used to calculate other parameters important for determination of carbon stock changes and GHG emissions like the stock changes of living and dead biomass, as well as basic information on applied management measures. Aim of this study is to improve methodology for development and maintenance of land use and land use change matrix in the national GHG inventory system using geospatial data information of National forest inventory (NFI) and auxiliary data sources. Creation of land use and land use change matrix is performed in semi-automated way by using GIS tools, which eliminates possible impurities of reported data and have made the calculation process less time consuming than before. New calculation method takes into account present land use data from NFI and land use data from two previous NFI cycles, considerably reducing uncertainty of the estimates, and takes into account land management practices which may alter the land use category in long-term. Auxiliary data, like national land parcel information systems (LPIS), has been introduced to increase certainty, consistency and accuracy for determination of final land-use category. Year-by-year land use change extent detection is carried out by using linear interpolation and extrapolation method is used for the consecutive years for which NFI data are not available.</p><p><strong>Key words: </strong>ERA-GAS INVENT, land use and land use changes, national forest inventory, greenhouse gas inventory.</p>


2019 ◽  
Vol 25 (2) ◽  
pp. 273-280
Author(s):  
Gintaras Kulbokas ◽  
Vaiva Jurevičienė ◽  
Andrius Kuliešis ◽  
Algirdas Augustaitis ◽  
Edmundas Petrauskas ◽  
...  

There are significant inter-annual fluctuations of growing stock volume changes of living trees estimated by the Lithuanian National Forest Inventory (NFI). In the current study, we compared two sources of information on forest productivity: conventional NFI data and dendrochronological data based on tree cores collected in parallel with the measurements of the fourth Lithuanian NFI cycle during 2013–2017 on the same permanent plots (total number of cores was 4967). The main finding is that the dendrochronological basal area increment data confirmed the depression of gross stand volume increment around 2006–2007 (based on Lithuanian NFI measurements in 2008–2009), followed by a steep increase during 2008–2011 (NFI from 2010–2013). The findings explain the differences between projected growing stock volume change, which have been used for forest reference level estimation according to land use, land-use change and forestry sector regulation, and the one recently provided in National Greenhouse Gas Inventory Reports. Key words: Growing stock volume change, basal area increment, forest reference level, greenhouse gas reporting


2009 ◽  
Vol 160 (11) ◽  
pp. 334-340 ◽  
Author(s):  
Pierre Mollet ◽  
Niklaus Zbinden ◽  
Hans Schmid

Results from the monitoring programs of the Swiss Ornithological Institute show that the breeding populations of several forest species for which deadwood is an important habitat element (black woodpecker, great spotted woodpecker, middle spotted woodpecker, lesser spotted woodpecker, green woodpecker, three-toed woodpecker as well as crested tit, willow tit and Eurasian tree creeper) have increased in the period 1990 to 2008, although not to the same extent in all species. At the same time the white-backed woodpecker extended its range in eastern Switzerland. The Swiss National Forest Inventory shows an increase in the amount of deadwood in forests for the same period. For all the mentioned species, with the exception of green and middle spotted woodpecker, the growing availability of deadwood is likely to be the most important factor explaining this population increase.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Matieu Henry ◽  
Zaheer Iqbal ◽  
Kristofer Johnson ◽  
Mariam Akhter ◽  
Liam Costello ◽  
...  

Abstract Background National forest inventory and forest monitoring systems are more important than ever considering continued global degradation of trees and forests. These systems are especially important in a country like Bangladesh, which is characterised by a large population density, climate change vulnerability and dependence on natural resources. With the aim of supporting the Government’s actions towards sustainable forest management through reliable information, the Bangladesh Forest Inventory (BFI) was designed and implemented through three components: biophysical inventory, socio-economic survey and remote sensing-based land cover mapping. This article documents the approach undertaken by the Forest Department under the Ministry of Environment, Forests and Climate Change to establish the BFI as a multipurpose, efficient, accurate and replicable national forest assessment. The design, operationalization and some key results of the process are presented. Methods The BFI takes advantage of the latest and most well-accepted technological and methodological approaches. Importantly, it was designed through a collaborative process which drew from the experience and knowledge of multiple national and international entities. Overall, 1781 field plots were visited, 6400 households were surveyed, and a national land cover map for the year 2015 was produced. Innovative technological enhancements include a semi-automated segmentation approach for developing the wall-to-wall land cover map, an object-based national land characterisation system, consistent estimates between sample-based and mapped land cover areas, use of mobile apps for tree species identification and data collection, and use of differential global positioning system for referencing plot centres. Results Seven criteria, and multiple associated indicators, were developed for monitoring progress towards sustainable forest management goals, informing management decisions, and national and international reporting needs. A wide range of biophysical and socioeconomic data were collected, and in some cases integrated, for estimating the indicators. Conclusions The BFI is a new information source tool for helping guide Bangladesh towards a sustainable future. Reliable information on the status of tree and forest resources, as well as land use, empowers evidence-based decision making across multiple stakeholders and at different levels for protecting natural resources. The integrated socio-economic data collected provides information about the interactions between people and their tree and forest resources, and the valuation of ecosystem services. The BFI is designed to be a permanent assessment of these resources, and future data collection will enable monitoring of trends against the current baseline. However, additional institutional support as well as continuation of collaboration among national partners is crucial for sustaining the BFI process in future.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Johannes Schumacher ◽  
Marius Hauglin ◽  
Rasmus Astrup ◽  
Johannes Breidenbach

Abstract Background The age of forest stands is critical information for forest management and conservation, for example for growth modelling, timing of management activities and harvesting, or decisions about protection areas. However, area-wide information about forest stand age often does not exist. In this study, we developed regression models for large-scale area-wide prediction of age in Norwegian forests. For model development we used more than 4800 plots of the Norwegian National Forest Inventory (NFI) distributed over Norway between latitudes 58° and 65° N in an 18.2 Mha study area. Predictor variables were based on airborne laser scanning (ALS), Sentinel-2, and existing public map data. We performed model validation on an independent data set consisting of 63 spruce stands with known age. Results The best modelling strategy was to fit independent linear regression models to each observed site index (SI) level and using a SI prediction map in the application of the models. The most important predictor variable was an upper percentile of the ALS heights, and root mean squared errors (RMSEs) ranged between 3 and 31 years (6% to 26%) for SI-specific models, and 21 years (25%) on average. Mean deviance (MD) ranged between − 1 and 3 years. The models improved with increasing SI and the RMSEs were largest for low SI stands older than 100 years. Using a mapped SI, which is required for practical applications, RMSE and MD on plot level ranged from 19 to 56 years (29% to 53%), and 5 to 37 years (5% to 31%), respectively. For the validation stands, the RMSE and MD were 12 (22%) and 2 years (3%), respectively. Conclusions Tree height estimated from airborne laser scanning and predicted site index were the most important variables in the models describing age. Overall, we obtained good results, especially for stands with high SI. The models could be considered for practical applications, although we see considerable potential for improvements if better SI maps were available.


2021 ◽  
Vol 13 (10) ◽  
pp. 1863
Author(s):  
Caileigh Shoot ◽  
Hans-Erik Andersen ◽  
L. Monika Moskal ◽  
Chad Babcock ◽  
Bruce D. Cook ◽  
...  

Forest structure and composition regulate a range of ecosystem services, including biodiversity, water and nutrient cycling, and wood volume for resource extraction. Forest type is an important metric measured in the US Forest Service Forest Inventory and Analysis (FIA) program, the national forest inventory of the USA. Forest type information can be used to quantify carbon and other forest resources within specific domains to support ecological analysis and forest management decisions, such as managing for disease and pests. In this study, we developed a methodology that uses a combination of airborne hyperspectral and lidar data to map FIA-defined forest type between sparsely sampled FIA plot data collected in interior Alaska. To determine the best classification algorithm and remote sensing data for this task, five classification algorithms were tested with six different combinations of raw hyperspectral data, hyperspectral vegetation indices, and lidar-derived canopy and topography metrics. Models were trained using forest type information from 632 FIA subplots collected in interior Alaska. Of the thirty model and input combinations tested, the random forest classification algorithm with hyperspectral vegetation indices and lidar-derived topography and canopy height metrics had the highest accuracy (78% overall accuracy). This study supports random forest as a powerful classifier for natural resource data. It also demonstrates the benefits from combining both structural (lidar) and spectral (imagery) data for forest type classification.


2022 ◽  
Author(s):  
Tom Brandeis ◽  
Jeffery Turner ◽  
Andrés Baeza Motes ◽  
Mark Brown ◽  
Samuel Lambert

Sign in / Sign up

Export Citation Format

Share Document