scholarly journals THE EFFECT OF THE BIOFUEL PROPERTIES ON THE AUTOIGNITION DELAY IN A DIESE ENGINE

2014 ◽  
Vol 46 (1) ◽  
pp. 51-65
Author(s):  
Marius Mažeika ◽  
Gvidonas Labeckas ◽  
Oleg Klyus ◽  
Irena Kanapkienė

The article presents the test results of a four-stroke, four-cylinder, naturally aspirated, DI 60 kW diesel engine operating on diesel fuel (DF) and its 5 vol% (E5), 10 vol% (E10), and 15 vol% (E15) blends with anhydrous (99.8%) ethanol (E). An additional ethanol–diesel–biodiesel blend E15B was prepared by adding the 15 vol% of ethanol and 5 vol% of biodiesel (B) to diesel fuel (80 vol%). The purpose of the research was to examine the influence of the ethanol and RME addition to diesel fuel on the start of injection and autoignition delay. The widely differing physical and chemical properties of the biofuel blends along with engine load and speed modes were taken into account to provide sound analysis of the experimental test results. Studies showed that the density of biofuel blends E5, E10, E15 and E15B was 0.33%, 0.65%, 0.95% and 0.56% lower at the temperature of 40 °C than the corresponding value (0.828 kg/m3) of diesel fuel. Kinematic viscosity of biofuel blends E5, E10, E15 and E15B also decreased by 7.8%, 11.0%, 13.0% and 10.8% at the temperature of 40 °C and the cetane number was 3%, 9%, 14% and 12% lower, respectively, compared to commercial diesel fuel. The use of biofuel blends E15 and E15B the autoignition delay increased by 4.4% and 9.5% compared to normal diesel operation at full pe = 0.67 MPa (100%) load and 1400 rpm speed at which maximum torque occurs.

2021 ◽  
Vol 11 (3) ◽  
pp. 1273
Author(s):  
Chen Feng ◽  
Jiping Zhou ◽  
Xiaodong Xu ◽  
Yani Jiang ◽  
Hongcan Shi ◽  
...  

In recent years, 3D printing has received increasing attention from researchers. This technology overcomes the limitations of traditional technologies by printing precise and personalized scaffold with arbitrary shapes, pore structures, and porosities for the applications in various tissues. The cellulose nanocrystal (CNC) is extracted from Humulus Japonicus (HJS) and mixed with poly(ε-caprolactone) (PCL) to prepare a series of CNC/PCL composites for printing. Based on the analysis of the physical and chemical properties of the series of the CNC/PCL composites, an optimal mass ratio of CNC to PCL was obtained. The Solidworks was used to simulate the stretching and compression process of the scaffolds with three different patterns under an external force. The flow of nutrient solution in the scaffolds with different patterns was simulated by ANSYS FLUENT, and then a new optimization scaffold pattern with a concave hexagon shape was advised based on the simulation results. Collectively, the mechanical test results of the material and scaffold confirmed that the optimal filling amount of the CNC was 5%, and the scaffold pattern with concave hexagon shape exhibited better mechanical properties and suitable for the transport of cells and nutrients, which is expected to be more widely used in 3D printing.


The effect of Nano charcoal ash (NCA) from coconut shell on the physical and chemical properties of bitumen as alternative binder was evaluated in this study. Six different Nano grades of charcoal ash were examined. The charcoal ash ground for the optimum grinding time had a median particle size of 148 nm. NCA dosage of 30% by weight of binder was used throughout the experiments. Nanoparticle size analysis and X-ray fluorescence were performed to determine the size and chemical properties of material. Dynamic shear rheometer, penetration, softening point, and penetration index were used to characterize the physical properties of NCA. Thirty hours of grinding time produced the optimum NCA, which could enhance the binder performance. Test results indicated that adding NCA from coconut shell to bitumen improved the binder stiffness up to 47% and significantly increased the softening point up to 12% compared with virgin binder.


2017 ◽  
Vol 170 (3) ◽  
pp. 154-158
Author(s):  
Stanisław KRUCZYŃKI ◽  
Marcin ŚLĘZAK ◽  
Wojciech GIS ◽  
Piotr ORLIŃSKI ◽  
Andrzej KULCZYCKI ◽  
...  

This paper discusses briefly the production technology of dimethyl ether, taking into account plant raw materials and the physical and chemical properties of DME as compared to diesel fuel. The benefits and disadvantages of DME as a fuel are presented and changes in the emission of harmful substances characterised as compared to the combustion of diesel fuel. Also, basic usage problems are addressed, e.g. the wear of engine’s elements, cavity and leakages in the fuel system.


2020 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Lindawati Lindawati ◽  
Irwansyah Irwansyah ◽  
Nuzuli Fitriadi

Marble is a metamorphic rock that is widely distributed in the Earth�s continental layer. Regarding its antiquity and aesthetic appeal, it has been widely used as a construction material such as flooring tiles in buildings and monument. Physical and chemical properties of natural stones play an important role on deciding their application area as a building stone. This study reports the physicochemical analysis of marble stones from the Gunung Kerambil (GK), Alur Kering (AK) and Meukek (M) area in South Aceh District. Density, water absorption and chemical analyses of the marble samples were determined. Physical properties of samples were determined through laboratory measurements. Chemical characterizations were made using X-ray Fluorescence (XRF) method. Based on,water absorption test results, the marbles from South Aceh are applicable for tile application.


Fuel ◽  
2011 ◽  
Vol 90 (2) ◽  
pp. 795-802 ◽  
Author(s):  
Eloisa Torres-Jimenez ◽  
Marta Svoljšak Jerman ◽  
Andreja Gregorc ◽  
Irenca Lisec ◽  
M. Pilar Dorado ◽  
...  

Author(s):  
Thushara Priyadarshana ◽  
Ranjith Dissanayake

In this study, supplementary cementing materials (SCM), such as nanosilica and microsilica, have been evaluated for optimal levels of replacement as a blending material in cement. The physical and chemical properties of these materials were first analyzed, then the properties of neat samples, mortar samples, and concrete samples were investigated. Mainly this study focused on the workability and compressive strength with different mixes at different ages of neat, mortar and concrete mixes. Test results obtained in this study indicate that up to 5% nanosilica and 10% of microsilica could be advantageously blended with cement without adversely affecting the strength. However, optimum levels of these materials are 1-3% of nanosilica and 3-8% of microsilica when we consider the strength of concrete.


Sign in / Sign up

Export Citation Format

Share Document