scholarly journals Effect of Nano Charcoal Ash Coconut Shell in Bitumen as Alternative Binder

The effect of Nano charcoal ash (NCA) from coconut shell on the physical and chemical properties of bitumen as alternative binder was evaluated in this study. Six different Nano grades of charcoal ash were examined. The charcoal ash ground for the optimum grinding time had a median particle size of 148 nm. NCA dosage of 30% by weight of binder was used throughout the experiments. Nanoparticle size analysis and X-ray fluorescence were performed to determine the size and chemical properties of material. Dynamic shear rheometer, penetration, softening point, and penetration index were used to characterize the physical properties of NCA. Thirty hours of grinding time produced the optimum NCA, which could enhance the binder performance. Test results indicated that adding NCA from coconut shell to bitumen improved the binder stiffness up to 47% and significantly increased the softening point up to 12% compared with virgin binder.

2021 ◽  
Vol 11 (3) ◽  
pp. 1273
Author(s):  
Chen Feng ◽  
Jiping Zhou ◽  
Xiaodong Xu ◽  
Yani Jiang ◽  
Hongcan Shi ◽  
...  

In recent years, 3D printing has received increasing attention from researchers. This technology overcomes the limitations of traditional technologies by printing precise and personalized scaffold with arbitrary shapes, pore structures, and porosities for the applications in various tissues. The cellulose nanocrystal (CNC) is extracted from Humulus Japonicus (HJS) and mixed with poly(ε-caprolactone) (PCL) to prepare a series of CNC/PCL composites for printing. Based on the analysis of the physical and chemical properties of the series of the CNC/PCL composites, an optimal mass ratio of CNC to PCL was obtained. The Solidworks was used to simulate the stretching and compression process of the scaffolds with three different patterns under an external force. The flow of nutrient solution in the scaffolds with different patterns was simulated by ANSYS FLUENT, and then a new optimization scaffold pattern with a concave hexagon shape was advised based on the simulation results. Collectively, the mechanical test results of the material and scaffold confirmed that the optimal filling amount of the CNC was 5%, and the scaffold pattern with concave hexagon shape exhibited better mechanical properties and suitable for the transport of cells and nutrients, which is expected to be more widely used in 3D printing.


2020 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Lindawati Lindawati ◽  
Irwansyah Irwansyah ◽  
Nuzuli Fitriadi

Marble is a metamorphic rock that is widely distributed in the Earth�s continental layer. Regarding its antiquity and aesthetic appeal, it has been widely used as a construction material such as flooring tiles in buildings and monument. Physical and chemical properties of natural stones play an important role on deciding their application area as a building stone. This study reports the physicochemical analysis of marble stones from the Gunung Kerambil (GK), Alur Kering (AK) and Meukek (M) area in South Aceh District. Density, water absorption and chemical analyses of the marble samples were determined. Physical properties of samples were determined through laboratory measurements. Chemical characterizations were made using X-ray Fluorescence (XRF) method. Based on,water absorption test results, the marbles from South Aceh are applicable for tile application.


2021 ◽  
Vol 54 (2C) ◽  
pp. 100-116
Author(s):  
Muhsen O. Khalaf

The research included conducting a study of eight selected soil Stations in the Babylon and Al Qadisiyyah. The main target of the research is to study the physical, chemical, and compressive strength properties of these soils and their suitability for manufacturing ordinary clay bricks. It was found through the evaluation of the soils of the studied samples that their physical properties ranged as follows: the water content (13.52-31.88%) and the grain size analysis of the proportions of sand, silt, and clay as follows: (5-27%) (38-48%) (33-47%), respectively. The values of the Atterberg limits ranged as follows: the plastic limit ratios (13-21%), liquid limit (34-49%), plasticity index (13-28%), and the specific gravity ranged between (2.43-2.67). As for the chemical properties of the studied samples, they consist of a lot of silicates, carbonate calcium, and calcium oxide. Studied samples were characterized by water absorption 15-24%, and the efflorescence is varied from medium, low to nil. The soil samples are consequently considered as a suitable material for the manufacture of ordinary bricks in grades A and B based on Iraqi Standard specifications No. 25.


Author(s):  
Thushara Priyadarshana ◽  
Ranjith Dissanayake

In this study, supplementary cementing materials (SCM), such as nanosilica and microsilica, have been evaluated for optimal levels of replacement as a blending material in cement. The physical and chemical properties of these materials were first analyzed, then the properties of neat samples, mortar samples, and concrete samples were investigated. Mainly this study focused on the workability and compressive strength with different mixes at different ages of neat, mortar and concrete mixes. Test results obtained in this study indicate that up to 5% nanosilica and 10% of microsilica could be advantageously blended with cement without adversely affecting the strength. However, optimum levels of these materials are 1-3% of nanosilica and 3-8% of microsilica when we consider the strength of concrete.


2020 ◽  
Vol 10 (9) ◽  
pp. 3174
Author(s):  
Meng-Chia Weng ◽  
Chiou-Liang Lin ◽  
Cheng-Hsi Lee

The heat treatment of oil-contaminated sites is widely carried out for the purposes of remediation. However, heat treatment changes the physical and chemical properties of soil. Before the soil can be reused as a construction material in civil engineering, such as in backfill or road base materials, the changes to its physical properties must be understood. Therefore, this study investigates the changes in the physical and chemical properties of oil-contaminated soil after heat treatment. In this investigation, experimental samples of soil with added oil from a refinery plant are used to investigate the removal rate of total petroleum hydrocarbons (TPHs) by thermal desorption and incineration. The physical properties of the soil, including water permeability and mechanical properties, are compared before and after heat treatment. The results of this study are as follows. (1) Particle size analysis reveals that heat treatment makes soil particles finer. (2) In the burning reduction test, heat treatment at 900 °C removes more than 90% of THP. (3) In the direct shear test, the friction angle (ϕ) increases with the removal rate. (4) In the hydraulic test, as the removal rate increases, the permeability coefficient increases after heat treatment.


2011 ◽  
Vol 332-334 ◽  
pp. 1378-1381 ◽  
Author(s):  
Jie Liu ◽  
Hui Cui Wang

Based on the physical and chemical properties of silk and flax fibers, different reactive dyes are selected in union-color of one bath dyeing. For evaluating the dye-ability of the blended fabrics, reactive dyes containing bi-functional reactive groups are found. On basis of a number of experiments, influences of fixing temperature, fixing time, sodium sulfate consumption and sodium carbonate dosage are discussed. Through orthogonal experiment,the optimum conditions to silk/flax blended fabrics with Reactive Yellow B-4GLN are defined. Results of performance test indicate that Reactive Yellow B-4GLN has good colorfastness and levels and the union-color property of silk/flax fabrics is well.


2014 ◽  
Vol 46 (1) ◽  
pp. 51-65
Author(s):  
Marius Mažeika ◽  
Gvidonas Labeckas ◽  
Oleg Klyus ◽  
Irena Kanapkienė

The article presents the test results of a four-stroke, four-cylinder, naturally aspirated, DI 60 kW diesel engine operating on diesel fuel (DF) and its 5 vol% (E5), 10 vol% (E10), and 15 vol% (E15) blends with anhydrous (99.8%) ethanol (E). An additional ethanol–diesel–biodiesel blend E15B was prepared by adding the 15 vol% of ethanol and 5 vol% of biodiesel (B) to diesel fuel (80 vol%). The purpose of the research was to examine the influence of the ethanol and RME addition to diesel fuel on the start of injection and autoignition delay. The widely differing physical and chemical properties of the biofuel blends along with engine load and speed modes were taken into account to provide sound analysis of the experimental test results. Studies showed that the density of biofuel blends E5, E10, E15 and E15B was 0.33%, 0.65%, 0.95% and 0.56% lower at the temperature of 40 °C than the corresponding value (0.828 kg/m3) of diesel fuel. Kinematic viscosity of biofuel blends E5, E10, E15 and E15B also decreased by 7.8%, 11.0%, 13.0% and 10.8% at the temperature of 40 °C and the cetane number was 3%, 9%, 14% and 12% lower, respectively, compared to commercial diesel fuel. The use of biofuel blends E15 and E15B the autoignition delay increased by 4.4% and 9.5% compared to normal diesel operation at full pe = 0.67 MPa (100%) load and 1400 rpm speed at which maximum torque occurs.


Author(s):  
Marvy Girgis ◽  
Jérémie Barbier ◽  
Alain Quignard ◽  
Isabelle Merdrignac ◽  
João Marques

Studying bitumen has always posed a challenge to researchers owing to its extreme complexity and unique properties. To classify it commercially and to determine bitumen grade, two standard empirical tests have been adopted within the European standardized bitumen binders system [EN 12591:2009 (2009) Bitumen and bituminous binders – Specifications for paving grade bitumens]: Softening Point (SP) and Penetration (PEN). The relationship between these two tests and the physical or chemical properties of bitumen is not well understood. For the first time, this study represents an attempt to build more understanding of such a relationship through a comprehensive study of the correlation between the two standard tests and many physical and chemical properties of bitumen. A second goal is to propose some predictive models for these two tests and compare their predictive accuracy. Therefore, 13 Straight Run Vacuum Residues (SRVR) samples from different geographical origins were analyzed to measure the following parameters: Dynamic Viscosity (VisDy), Conradson Carbon Residue (CCR), C5 Asphaltenes Content (AspC5), C7 Asphaltenes Content (AspC7), Elemental Analysis (including C, H, O, N, S, Ni, and V content), Simulated Distillation (SD), Fourier-Transform Infrared Spectroscopy (FT-IR), and proton nuclear magnetic resonance spectroscopy (H-NMR). Results of studying correlations using correlation matrix and Principal Component Analysis (PCA) have emphasized the prominent effect of asphaltenes content on the other properties and the results of SP and PEN. It has also shown the potential importance of the aliphaticity/aromaticity of bitumen. Then, four models were proposed for the prediction of SP and PEN: viscosity, FT-IR, H-NMR, and multi-parameter models. Partial least squares (PLS) regression was used for building all models, except viscosity ones. All SP models, except H-NMR model, exhibited very good accuracy compared to the standard method. On the other hand, PEN was more difficult to predict than SP and only the multi-parameter model of PEN showed relatively good accuracy of prediction.


2021 ◽  
Vol 4 (2) ◽  
pp. 324
Author(s):  
Norhikmah ◽  
Noor Mirad Sari ◽  
Muhammad Faisal Mahdie

Tapioka flour as an adhesive for coconut shell charcoal briquettes can affect the characteristics of charcoal briquettes consisting of physical and chemical properties. The purpose of this study was to determine the physical properties of coconut shell charcoal briquettes in several adhesive percentages. The method used was a completely randomized design pattern and in this study there was only one factor (factor = coconut shell charcoal and tapioca adhesive/starch), as many as 5 treatments with 3 replicatins = 15 samples to be tested. Charakteristics of coconut shell charcoal briquettes that meet ASTM standard : water content that entered ASTM standard (Max 6%) in treatment A2 (95% coconut shell charcoal + 5% tapioca adhesive), the best density is found in treatment A3 (90% coconut shell charcoal + 10% tapioca adhesive)and enter ASTM standard(1.0-1.2 g / cm3), ash content that falls within the ASTM standard (Max 18%) in treatment A3(90% coconut shell charcoal + 10% tapioca adhesive), flying substancs that comply with ASTM standard (19-28%) in treatment A3 (90% charcoal coconut shell + 10% tapioca adhesive), bonded carbon content which is included in the ASTM standard (at least 58%) in treatment A2 (95% coconut shell charcoal + 5% tapioca adhesive),and the best heating value is found in the treatment A3 ( 90% coconut shell charcoal + 10% tapioca adhesive) which falls within the ASTM standard (4000-6500 cal / g). The results of this study indicate that the percentage of tapioca adhesive can affect the characteristics of coconut shell charcoal briquetess.Keywords: Percentage of tapioca adhesive; Charcoal briquettes; Coconut shell


1966 ◽  
Vol 24 ◽  
pp. 101-110
Author(s):  
W. Iwanowska

In connection with the spectrophotometric study of population-type characteristics of various kinds of stars, a statistical analysis of kinematical and distribution parameters of the same stars is performed at the Toruń Observatory. This has a twofold purpose: first, to provide a practical guide in selecting stars for observing programmes, second, to contribute to the understanding of relations existing between the physical and chemical properties of stars and their kinematics and distribution in the Galaxy.


Sign in / Sign up

Export Citation Format

Share Document