scholarly journals ENERGY PRODUCTION FROM WASTES BY THERMAL GASIFICATION PROCESSES

2018 ◽  
Vol 16 (2) ◽  
pp. 158-165
Author(s):  
Paulo Brito

The sustainable energy will play a key role in the future of the planet, not only because in 20 years Biomass is expected to deliver around 30% of total energy consumption, but also because BioEnergy, produced mainly through combustion and gasification of agro-industrial waste, woody materials and forest crops, is expected to be fundamental for sustainable energy production. Problems related to the emissions of greenhouse gases, lack of fossil natural resources and the increasing price of fuels have progressively encouraged research and adoption of new technological strategies for energy production from renewable sources and application of waste-to-energy (WTE) concepts. Syngas obtained from gasification of biomass and industrial wastes constitutes an interesting resource for energy generation because it has lower impacts for the environment compared to traditional technologies and allows for the valorisation of waste residues as feedstock. This work presents the scope, potential and technologies related to the use of biomass resources with a focus on thermal gasification of wastes.

Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 691
Author(s):  
Aida Mérida García ◽  
Juan Antonio Rodríguez Díaz ◽  
Jorge García Morillo ◽  
Aonghus McNabola

The use of micro-hydropower (MHP) for energy recovery in water distribution networks is becoming increasingly widespread. The incorporation of this technology, which offers low-cost solutions, allows for the reduction of greenhouse gas emissions linked to energy consumption. In this work, the MHP energy recovery potential in Spain from all available wastewater discharges, both municipal and private industrial, was assessed, based on discharge licenses. From a total of 16,778 licenses, less than 1% of the sites presented an MHP potential higher than 2 kW, with a total power potential between 3.31 and 3.54 MW. This total was distributed between industry, fish farms and municipal wastewater treatment plants following the proportion 51–54%, 14–13% and 35–33%, respectively. The total energy production estimated reached 29 GWh∙year−1, from which 80% corresponded to sites with power potential over 15 kW. Energy-related industries, not included in previous investigations, amounted to 45% of the total energy potential for Spain, a finding which could greatly influence MHP potential estimates across the world. The estimated energy production represented a potential CO2 emission savings of around 11 thousand tonnes, with a corresponding reduction between M€ 2.11 and M€ 4.24 in the total energy consumption in the country.


Author(s):  
Piyush Pratap Singh ◽  
Neelkanth Nirmalkar ◽  
Tarak Mondal

Catalytic steam reforming (SR) of agricultural waste derived bio-oil for hydrogen production is a unique technology, offering twin benefits of waste management as well as sustainable energy production. In the...


2020 ◽  
Vol 5 (10) ◽  
pp. 1260-1262
Author(s):  
Stela Sefa ◽  
Tania Floqi ◽  
Julian Sefa

The wastewater treatment plant serving the city of Durres, which is the second most populous city of Albania, employs the tertiary advanced wastewater treatment method and engages in biogas production to achieve energy efficiency. In order to empirically evaluate the plant’s energy efficiency realization, the total biogas produced and converted to electricity for daily consumption was measured during a three years period (2016 - 2018). The highest electricity produced was recorded in 2016, with a daily average of 844kWh compared to 550kWh and 370kWh in 2017 and 2018, respectively. So that the plant meets proper criteria to classify as an energy-efficient entity, 30.0 percent of its electricity consumption must be derived from biogas. Converted in kWh, the plant should generate 2,975 kWh/day. Based on the biomass and energy values measured during the study period, it is concluded that electricity supplied from biogas met 6.0 percent of the plant’s energy requirements, or one fifth of the energy-efficiency target. While the plant was successful in carrying out the full waste-to-energy production process, the electricity supplied from biogas was very low and did not fulfil the plant’s self-energy requirements.


2021 ◽  
Author(s):  
Jeff Cogliati

The following thesis began as an investigation into post-industrial urban waste and the ecological remediation potential that such landscapes embody. It looks at the forces behind waste landscapes or drosscapes and examines the theories associated with the ever-growing amount of waste landscapes throughout our cities. This thesis is largely centered on using Landscape Urbanism as a means of regenerating post-industrial waste sites. The Landscape Urbanists have proposed the use of landscape, rather than architecture, to transform urban waste and reconnect it back to the urban fabric. Where does architecture exist within this context? How can architecture act as a catalyst throughout this transformation? This thesis will examine how architecture and landscape can operate in unison throughout post-industrial site remediation and it will explore how built form can become an integral part of a continuous landscape.


Sign in / Sign up

Export Citation Format

Share Document