scholarly journals Development and validation of RRLC–UV method for determination of chlorogenic acid in green coffee

2020 ◽  
Vol 32 (1) ◽  
pp. 34-38
Author(s):  
Lenche Velkoska-Markovska ◽  
Mirjana S. Jankulovska ◽  
Biljana Petanovska-Ilievska ◽  
Kristijan Hristovski

Coffee is one of the most widely consumed beverages in the world. It contains many bioactive compounds, including chlorogenic acid which possesses various biological properties. In this study, in order to determine concentration of chlorogenic acid in green coffee, a reverse-phase rapid resolution liquid chromatography (RP-RRLC) method with diode-array detection (DAD) was developed. Successful separation was achieved on a Poroshell 120 EC-C18 (50 mm × 3 mm; 2.7 μm) column using acetonitrile–water with 1% phosphoric acid (10:90, v/v) as a mobile phase, at a flow rate of 1 mL/min, and with UV detection at 325 nm. The identification was made with comparison of the retention time of pure analytical standard with the retention time of chlorogenic acid in the analyzed samples. The developed method was validated using the following parameters: linearity, sensitivity, selectivity, precision, and accuracy. Excellent linearity over the range 12.33–143.50 μg/mL was achieved with R2 values greater than 0.99. The intra-day precision was validated with the %RSD values, which confirmed that the method for determination of chlorogenic acid was repeatable. The mean recovery rate of the method ranged between 97.87% and 106.67% with %RSD values lower than 1%. The limit of detection and limit of quantification values under the used chromatographic conditions were 0.29 and 0.96 pg, respectively. This method was successfully employed for quantitative determination of chlorogenic acid in green coffee samples.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Indhu Priya Mabbu ◽  
G. Sumathi ◽  
N. Devanna

Abstract Background The aim of the present method is to develop and validate a specific, sensitive, precise, and accurate liquid chromatography-mass spectrometry (LC-MS) method for the estimation of the phenyl vinyl sulfone in the eletriptan hydrobromide. The effective separation of the phenyl vinyl sulfone was achieved by the Symmetry C18 (50 × 4.6 mm, 3.5 μm) column and a mobile phase composition of 0.1%v/v ammonia buffer to methanol (5:95 v/v), using 0.45 ml/min flow rate and 20 μl of injection volume, with methanol used as diluent. The phenyl vinyl sulfone was monitored on atomic pressure chemical ionization mode mass spectrometer with positive polarity mode. Results The retention time of phenyl vinyl sulfone was found at 2.13 min. The limit of detection (LOD) and limit of quantification (LOQ) were observed at 1.43 ppm and 4.77 ppm concentration respectively; the linear range was found in the concentration ranges from 4.77 to 27.00 ppm with regression coefficient of 0.9990 and accuracy in the range of 97.50–102.10%. The percentage relative standard deviation (% RSD) for six replicates said to be injections were less than 10%. Conclusion The proposed method was validated successfully as per ICH guidelines. Hence, this is employed for the determination of phenyl vinyl sulfone in the eletriptan hydrobromide.


2010 ◽  
Vol 7 (3) ◽  
pp. 807-812 ◽  
Author(s):  
Vanita Somasekhar ◽  
D. Gowri Sankar

A reverse phase HPLC method is described for the determination of esmolol hydrochloride in bulk and injections. Chromatography was carried on a C18column using a mixture of acetonitrile, 0.05 M sodium acetate buffer and glacial acetic acid (35:65:3 v/v/v) as the mobile phase at a flow rate of 1 mL/min with detection at 275 nm. The retention time of the drug was 4.76 min. The detector response was linear in the concentration of 1-50 μg/mL. The limit of detection and limit of quantification was 0.614 and 1.86 μg/mL respectively. The method was validated by determining its sensitivity, linearity, accuracy and precision. The proposed method is simple, economical, fast, accurate and precise and hence can be applied for routine quality control of esmolol hydrochloride in bulk and injections.


2017 ◽  
Vol 9 (5) ◽  
pp. 102
Author(s):  
Sukhjinder Kaur ◽  
Taranjit Kaur ◽  
Gurdeep Kaur ◽  
Shivani Verma

Objective: The aim of the present work was to develop a simple, rapid, accurate and economical UV-visible spectrophotometric method for the determination of hydroquinone (HQ) in its pure form, marketed formulation as well as in the prepared nanostructured lipid carrier (NLC) systems and to validate the developed method.Methods: HQ was estimated at UV maxima of 289.6 nm in pH 5.5 phosphate buffer using UV-Visible double beam spectrophotometer. Following the guidelines of the International Conference on Harmonization (ICH), the method was validated for various analytical parameters like linearity, precision, and accuracy robustness, ruggedness, limit of detection, quantification limit, and formulation analysis.Results: The obtained results of the analysis were validated statistically. Recovery studies were performed to confirm the accuracy of the proposed method. In the developed method, linearity over the concentration range of 5-40 μg/ml of HQ was observed with the correlation coefficient of 0.998 and found in good agreement with Beer Lambert’s law. The precision (intra-day and inter-day) of the method was found within official RCD limits (RSD<2%).Conclusion: The sensitivity of the method was assessed by determining the limit of detection and limit of quantification. It could be concluded from the results obtained that the purposed method for estimation of HQ in pure form, in the marketed ointment and in the prepared NLC-formulation was simple, rapid, accurate, precise and economical. It can be used successfully in the quality control of pharmaceutical formulations and for the routine laboratory analysis.


2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Ahmed Salem Sebaei ◽  
Ahmed M. Gomaa ◽  
A. A. El-Zwahry ◽  
E. A. Emara

Formaldehyde is one of the most dangerous chemical compounds affecting the human health; exposure to it from food may occur naturally or by intentional addition. In this study a high performance liquid chromatography method for determination of formaldehyde in dairy products was described. The dairy samples were reacted and extracted with a warmed organic solvent in the presence of derivatizing agent 2,4-dinitrophenylhydrazine (DNPH) and formaldehyde; the mixture was centrifuged and followed by diode array detection. The method is validated and gives average recovery of formaldehyde at the three different levels 0.1, 5.0, and 10.0 mg/kg varied between 89% and 96%. The method is linear from the limit of quantification 0.1 mg/kg up to 10 mg/kg levels. This method is intended for formaldehyde analyses in dairy products simply with stable derivatization, minimum residue loss, excellent recovery, and accurate results with a sensitive limit of detection 0.01 mg/kg. 90 dairy samples from milk, cheese, and yogurt were investigated from seven Egyptian governorates and all samples were free from formaldehyde.


2020 ◽  
Vol 32 (9) ◽  
pp. 2208-2212
Author(s):  
CH. RAMESH ◽  
DHARMASOTH RAMA DEVI DEVI ◽  
M.N.B. SRINIVAS ◽  
S. RADHA KRISHNA ◽  
NAGARAJU RAJANA ◽  
...  

simple, specific, linear, accurate and precise reverse phase chiral HPLC method was developed for the separation of efavirenz enantiomers by using the Lux Amylose-2 column containing amylose tris(5-chloro-2-methyl phenyl carbamate) as a stationary phase. The mobile phase consists of 0.1 % formic acid in water and acetonitrile (55:45, v/v). The flow rate was kept at 1.0 mL/min and the detection wavelength used 252 nm and the column temperature was set at 25 ºC. The limit of detection was 0.01 mg/mL and the limit of quantification was 0.04 mg/mL. The linearity calibration curve of (R)-enantiomer was shown well from the range of 0.04 mg/mL to 0.4 mg/mL. The values of the correlation coefficient were 0.999 and 0.999 for (R)-enantiomer and (S)-efavirenz, respectively. The percentage recoveries of (R)-enantiomer from efavirenz drug substance were ranged from 93.5% to 107.5%. The results demonstrated that developed RP-chiral HPLC method was simple, precise, robust and applicable for the estimation of (R)-enantiomer in efavirenz API. This method was validated in as per ICH Q2 (R1) and USP validation of compendial methods <1225>.


2013 ◽  
Vol 19 (3) ◽  
pp. 333-337 ◽  
Author(s):  
A.C. Arvadiya ◽  
P.P. Dahivelker

A simple, precise, accurate, sensitive and repeatable RP-UPLC method was developed for quantitative determination of atropine sulphate in pharmaceutical dosage form. The method was developed by using C18 column Hiber HR Purospher Star (100mm?2.1mm id, 2?m particle size) as stationary phase with Phosphate Buffer: Acetonitrile (87:13, %v/v) as a mobile phase, pH was adjusted to 3.5 by ortho-phosphoric acid at a flow rate of 0.5 mL/min and column temperature maintained at 30?C. Quantification of eluted compound was achieved with PDA detector at 210 nm. Atropine sulphate followed linearity in concentration range of 2.5-17.5 ?g/mL with r2=0.9998 (n=6). Limit of detection (LOD) and limit of quantification (LOQ) values were 0.0033 and 0.0102 ?g/mL for atropine sulphate. The validation study is carried out as per International Conference on Harmonization (ICH) guidelines. This method was successfully applied for estimation of atropine sulphate in pharmaceutical formulation.


2020 ◽  
Vol 10 (6) ◽  
pp. 49-56
Author(s):  
Sneha Jagnade ◽  
Pushpendra Soni ◽  
Lavakesh Kumar Omray

The aim of present study was to investigate the development and validation of a green analytical method for the determination of aspirin and domperidone. Method Development and Validation for Estimation of Domperidone and Aspirin in bulk or formulation by using RP-HPLC. The RP-HPLC method was developed for estimation of Aspirin and Domperidone in synthetic mixture by isocratically using 10 mM KH2PO4: Acetonitrile (20:80) as mobile phase, Prontosil C-18 column (4.6 x 250 mm, 5μparticle size) column as stationary phase and chromatogram was recorded at 231 nm. Then developed method was validated by using various parameters such as, linearity, Range accuracy, precision repeatability, intermediate precision, robustness, limit of detection, limit of quantification. The proposed methods were found to be linear with correlation coefficient close to one. Precision was determined by repeatability, Intermediate precision and reproducibility of the drugs. The robustness of developed method was checked by changing in the deliberate variation in solvent. The result obtained shows the developed methods to be Cost effective, Rapid (Short retention time), Simple, Accurate (the value of SD and % RSD less than 2), Precise and can be successfully employed in the routine analysis of these drugs in bulk drug as well as in tablet dosage form. The Simplicity, Rapidly and Reproducibility of the proposed method completely fulfill the objective of this research work. Keywords: Asprin; Domperidone; HPLC; Ultra Violet; Validation


Author(s):  
Gudipally. Mounika ◽  
K. Bhavya Sri ◽  
R. Swethasri ◽  
M. Sumakanth

To develop an accurate, precise, specific high performance liquid chromatography method for quantification of Canagliflozin in bulk and dosage forms. A C18 column (250mm X 4.6mm; 5μm phenomenex) was used with mobile phase containing Acetonitrile-0.1% sodium acetate buffer (pH-4.6), (20:80) in isocratic mode. The flow rate maintained was 1.0ml/min and the U.V detector was operated at 291nm. The retention time of Canagliflozin was 3.307min and showed a good linearity in concentration range of 2-14μg/ml with correlation coefficient of 0.999. The average percent recovery was found to be 99.98%. The developed method follows validation parameters such as system suitability, linearity, precision, accuracy, limit of detection and limit of quantification and robustness as per ICH guidelinesQ2(R1). The proposed method was found to provide faster retention time with sharp resolution with linearity at a lowest concentration as compared to previous methods and this method is validated as per International conference on harmonization guidelines and successfully applied for bulk and pharmaceutical dosage form.


Author(s):  
ANUJA SURYAWANSHI ◽  
AFAQUEANSARI ◽  
MALLINATH KALSHETTI

Objective: The present work is aimed to develop a simple, rapid, selective and economical UV spectrophotometric method for quantitative determination of Glipizideinbulk and pharmaceutical dosage form. Methods: In this method Dimethyl Form amide (DMF) was used as solvent, the absorption maxima was found to be275 nm in DMF. The developed method was validated for linearity, accuracy, precision, ruggedness, robustness, LOD and LOQ in accordance with the requirements of ICH guideline. Results: The linearity was found to be 10-60 µg/ml having linear equation y=0.017x-0.006 with correlation coefficient of 0.997. The% recovery was found to be in the range of 98.7-100%. The % RSD for intra-day and inter-day precision was found to be 0.569923 and 0.40169 respectively. The limit of detection (LOD) and limit of quantification (LOQ) was found to be3.06 µg/ml and 9.27 µg/ml respectively. Conclusion: The developed method was validated as per ICH Q2(R1) guidelines. The novel method is applicable for the analysis of bulk drug in its pharmaceutical dosage form.


Author(s):  
Ayya Rajendra Prasad ◽  
Jayanthi Vijaya Ratna

 Objective: The objective of this study was developed and validated a novel, specific, precise, and simple ultraviolet (UV)-spectrophotometric method for the estimation of norfloxacin present in taste masked drug-resin complex.Methods: UV-spectrophotometric determination was performed with ELICO SL 1500 UV-visible spectrophotometer using 0.1 N HCl as a medium. The spectrum of the standard solution was run from 200 to 400 nm range for the determination of absorption maximum (λ max). λ max of norfloxacin was found at 278 nm. The absorbance of standard solutions of 1, 2, 3, 4, and 5 μg/ml of drug solution was measured at an absorption maximum at 278 nm against the blank. Then, a graph was plotted by taking concentration on X-axis and absorbance on Y-axis which gave a straight line. Validation parameters such as linearity and range, selectivity and specificity, limit of detection (LOD) and limit of quantification (LOQ), accuracy, precision, and robustness were evaluated as per the International Conference on Harmonization (ICH) guidelines.Results: Linearity for the UV-spectrophotometric method was noted over a concentration range of 1–5 μg/ml with a correlation coefficient of 0.9995. The LOD and LOQ for norfloxacin were found at 0.39 μg/ml and 1.19 μg/ml, respectively. Accuracy was in between 99.00% and 99.17%. % relative standard deviation for repeatability, intraday precision, and interday precision was found to be 0.600, in between 0.291 and 0.410, and in between 0.682 and 1.439, respectively. The proposed UV spectrophotometric method is found to be robust.Conclusion: The proposed UV-spectrophotometric method was validated according to the ICH guidelines, and results and statistical parameters demonstrated that the developed method is sensitive, precise, reliable, and simple for the estimation of norfloxacin present in taste masked drug-resin complex.


Sign in / Sign up

Export Citation Format

Share Document