scholarly journals Relationship analysis of wall transmittance and wind speed with numerical method

2019 ◽  
Vol 10 (2) ◽  
pp. 207-212
Author(s):  
F. Szodrai

In heat transfer calculations, transmittance values are often used as a constant in practice. With the spread of dynamic simulations, it opens an opportunity to study the sensitivity of the external effects (e.g., wind speed) on buildings. With the proper amount of result, adequate simplifications can be made to reduce the duration of the simulations. In this paper several steady sate simulations were carried out by Ansys 19.1. Academic version. In the examined cases three building structures were examined with different thermal resistances. Average initial air temperature difference was applied on the two sides of the structures, at the cold side the wind speed was varied, while at the warm side natural convection was present. The surface temperatures and the heat flux were monitored and the transmittances were calculated as a result.

2014 ◽  
Vol 136 (11) ◽  
Author(s):  
Corey E. Clifford ◽  
Mark L. Kimber

Natural convection heat transfer from a horizontal cylinder is of importance in a large number of applications. Although the topic has a rich history for unconfined cylinders, maximizing the free convective cooling through the introduction of sidewalls and creation of a chimney effect is considerably less studied. In this investigation, a numerical model of a heated horizontal cylinder confined between two vertical adiabatic walls is employed to evaluate the natural convective heat transfer. Two different treatments of the cylinder surface are investigated: constant temperature (isothermal) and constant surface heat flux (isoflux). To quantify the effect of wall distance on the effective heat transfer from the cylinder surface, 18 different confinement ratios are selected in varying increments from 1.125 to 18.0. All of these geometrical configurations are evaluated at seven distinct Rayleigh numbers ranging from 102 to 105. Maximum values of the surface-averaged Nusselt number are observed at an optimum confinement ratio for each analyzed Rayleigh number. Relative to the “pseudo-unconfined” cylinder at the largest confinement ratio, a 74.2% improvement in the heat transfer from an isothermal cylinder surface is observed at the optimum wall spacing for the highest analyzed Rayleigh number. An analogous improvement of 60.9% is determined for the same conditions with a constant heat flux surface. Several correlations are proposed to evaluate the optimal confinement ratio and the effective rate of heat transfer at that optimal confinement level for both thermal boundary conditions. One of the main application targets for this work is spent nuclear fuel, which after removal from the reactor core is placed in wet storage and then later transferred to cylindrical dry storage canisters. In light of enhanced safety, many are proposing to decrease the amount of time the fuel spends in wet storage conditions. The current study helps to establish a fundamental understanding of the buoyancy-induced flows around these dry cask storage canisters to address the anticipated needs from an accelerated fuel transfer program.


1969 ◽  
Vol 91 (4) ◽  
pp. 511-516 ◽  
Author(s):  
G. C. Vliet

Experimental local heat transfer data are presented for natural convection on constant-heat-flux inclined surfaces using water and air. The data extend to Grz* Pr = 1016, cover angles from the vertical to 30 deg with the horizontal, and include the laminar, transition, and turbulent regimes. In the laminar regime the data correlate well with vertical plate theory when the gravitational component parallel to the surface is used. Transition is strongly affected by inclination, the transition Grz* Pr decreasing from near 1013 for vertical surfaces to approximately 108 for a surface at 30 deg to the horizontal. The turbulent local heat transfer data correlate using the actual gravity rather than the parallel component, and indicates a change in the Grz* Pr exponent from near 0 22 for a vertical surface to approximately 1/4 as the inclination decreases. The turbulent data can be correlated quite well by Nuz = 0.30(Grz* Pr)0.24.


1980 ◽  
Vol 102 (4) ◽  
pp. 630-635 ◽  
Author(s):  
R. Anderson ◽  
A. Bejan

This paper describes an analytical study of laminar natural convection on both sides of a vertical conducting wall of finite height separating two semi-infinite fluid reservoirs of different temperatures. The countercurrent boundary layer flow formed on the two sides is illustrated via representative streamlines, temperature and heat flux distributions. The net heat transfer between reservoirs is reported for the general case in which the wall thermal resistance is not negligible relative to the overall reservoir-to-reservoir thermal resistance.


2000 ◽  
Vol 6 (4) ◽  
pp. 272-277
Author(s):  
Rolandas Samajauskas ◽  
Vytautas Stankevičius

Building insulating materials with good insulation properties usually are porous, because they contain large amounts of air or other gas inside. The pore system can be closed, as in many cellular plastics, or open as in fibre materials. The mechanisms of heat transfer in porous material are: conduction in solid phase, radiation within material and conduction due to the gas confined in the insulation. In an open-pore material, like lightweight mineral wool, the transportation of heat can be further increased by air movement (convection) through the permeable material. Convection is impossible in a closed porous materials like polystyrene (EPS, XPS) boards. But heat losses can be increased by air movement if there are cracks between boards and other building envelope structures. The airflow velocity and direction may vary strongly due to the changing boundary condition. However, at the present time in Lithuania convection in insulating materials is considered as non-existent, when calculating heat transmission and designing building structures. Because of the lack of knowledge concerning air movement in external building structures, and how it is affecting the heat transfer, this investigation has been carried out. For research an equipment (Fig 2) was made, assigned for exploring both vertical and horizontal structures (height 2100 mm, width 1100 mm and thickness up to 300 mm). For reducing heat losses through the sides up to minimum, an equipment was built from slabs (thickness 150 mm). As the hot side of equipment gypsum board was applied to the surface of which 8 heat flow sensors and 9 thermocouples were attached. For maintaining constant and isothermal temperature of the surface of this partition (Θi, =+20°C), heating elements and ventilators were mounted inside the equipment. The cold surface of the equipment was of the same construction as the warm one only with the regulated slide valve with an area of 0,02 m2. It allows exploring the so-called not-ventilated structures. During the test, temperature was measured at different places and depths. The research was performed on the foam polystyrene plates of 3×50 mm of thickness with 3–5 mm air gaps. Measurements were conducted in the following sequence: Two basic measurements of closed structure were performed for constant values of temperatures Θe=0°C and Θe=10°C. In this case the structure was held horizontally and heat flow was directed from top to bottom. Therefore it could be assumed that heat was transferred by conduction and radiation. Measurements of the closed structure were performed on the equipment being in vertical position and for external temperature Θe=0°C and Θe=10°C. Measurements of the opened structure. The measurement carried out for the same external environment conditions, the ventilating orifice being opened. The results of laboratory experiments allowed to assess the heat losses of the enclosure being arranged in the form of wall with air gaps applying foam polystyrene slabs. Different types of structures being investigated are shown in Fig 1. The Nu numbers for closed and ventilated structures are presented in Figs 8 and 9. The research results could be applied to enclosures with hard type insulation too. Although the natural convection does not occur inside the ideal material, but it takes place inside enclosure with air gaps. Thus, actual U-value depends on structural solutions and air tightness on building envelope. If wind barrier is permeable, then air filtration through the structure may cause even critical values for heat losses.


Sign in / Sign up

Export Citation Format

Share Document