scholarly journals The role of hydrogen sulfide in homocysteine-induced cardiodynamic effects and oxidative stress markers in the isolated rat heart

2016 ◽  
Vol 103 (4) ◽  
pp. 428-438 ◽  
Author(s):  
M Stojanovic ◽  
V Zivkovic ◽  
I Srejovic ◽  
V Jakovljevic ◽  
N Jeremic ◽  
...  

This study aimed to assess the role of H2S in homocysteine-induced cardiodynamic effects in the isolated rat heart. The hearts were retrogradely perfused according to the Langendorff technique. The maximum and minimum rates of pressure in the left ventricle (dp/dt max, dp/dt min), systolic and diastolic left ventricular pressures (SLVP, DLVP), heart rate (HR), and coronary flow (CF) were measured. A spectrophotometrical method was used to measure the following oxidative stress markers: index of lipid peroxidation (thiobarbituric acid reactive substances, TBARS), nitrite level (NO2−), superoxide anion radicals (O2•−), and hydrogen peroxide (H2O2) concentrations. The administration of 10 µmol/l DL-homocysteine (DL-Hcy) alone decreased dp/dt max, SLVP, and CF but did not change any oxidative stress parameters. The administration of 10 µmol/l DL-propargylglycine (DL-PAG) decreased all cardiodynamic parameters and increased the concentration of O2•−. The co-administration of DL-Hcy and DL-PAG induced a significant decrease in all estimated cardiodynamic parameters and decreased the concentration of NO2− and O2•− but increased the levels of TBARS and H2O2. Homocysteine shows a lower pro-oxidative effect in the presence of hydrogen sulfide (H2S), which indicates a potential anti-oxidative capacity of H2S.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Vladimir Zivkovic ◽  
Vladimir Jakovljevic ◽  
Olga Pechanova ◽  
Ivan Srejovic ◽  
Jovana Joksimovic ◽  
...  

Considering the adverse effects of DL-homocysteine thiolactone hydrochloride (DL-Hcy TLHC) on vascular function and the possible role of oxidative stress in these mechanisms, the aim of this study was to assess the influence of DL-Hcy TLHC alone and in combination with specific inhibitors of important gasotransmitters, such as L-NAME, DL-PAG, and PPR IX, on cardiac contractility, coronary flow, and oxidative stress markers in an isolated rat heart. The hearts were retrogradely perfused according to the Langendorff technique at a 70 cm H2O and administered 10 μM DL-Hcy TLHC alone or in combination with 30 μM L-NAME, 10 μM DL-PAG, or 10 μM PPR IX. The following parameters were measured:dp/dtmax,dp/dtmin, SLVP, DLVP, MBP, HR, and CF. Oxidative stress markers were measured spectrophotometrically in coronary effluent through TBARS, NO2,O2-, and H2O2concentrations. The administration of DL-Hcy TLHC alone decreaseddp/dtmax, SLVP, and CF but did not change any oxidative stress parameters. DL-Hcy TLHC with L-NAME decreased CF,O2-, H2O2, and TBARS. The administration of DL-Hcy TLHC with DL-PAG significantly increaseddp/dtmax but decreased DLVP, CF, and TBARS. Administration of DL-Hcy TLHC with PPR IX caused a decrease indp/dtmax, SLVP, HR, CF, and TBARS.


2017 ◽  
Vol 95 (11) ◽  
pp. 1327-1334 ◽  
Author(s):  
Ivan Srejovic ◽  
Vladimir Zivkovic ◽  
Tamara Nikolic ◽  
Nevena Jeremic ◽  
Isidora Stojic ◽  
...  

Considering the limited data on the role of NMDA-Rs in the cardiovascular system, the aim of the present study was to examine the effects of NMDA and DL-Hcy TLHC, alone and in combination with glycine, memantine, and ifenprodil, in the isolated rat heart. The hearts of Wistar albino rats were retrogradely perfused according to the Langendorff technique at a constant perfusion pressure. The experimental protocol for all experimental groups included the stabilization period, application of estimated substance for 5 min, followed by a washout period of 10 min. Using a sensor placed in the left ventricle, we registered the following parameters of myocardial function: dp/dtmax, dp/dtmin, SLVP, DVLP, HR; CF was measured using flowmetry). We estimated the following oxidative stress biomarkers in the coronary venous effluent using spectrophotometry: TBARS, NO2−, O2−, and H2O2. NMDA alone did not induce any change in any of the observed parameters, while DL-Hcy TLHC alone, as well as a combined application of NMDA and DL-Hcy TLHC with glycine, induced a reduction of most cardiodynamic parameters. Memantine and ifenprodil induced a reduction of cardiodynamic parameters and CF, as well as some oxidative stress biomarkers.


2018 ◽  
Vol 25 (3) ◽  
pp. 177 ◽  
Author(s):  
Vladimir Lj Jakovljevic ◽  
Anica Petkovic ◽  
Jovana Bradic ◽  
Jovana Jeremic ◽  
Tamara Nikolic Turnic ◽  
...  

Author(s):  
Tetyana V Shimanskaya ◽  
Yulia V. Goshovska ◽  
Olena M. Semenykhina ◽  
Vadim F. Sagach

2003 ◽  
Vol 285 (1) ◽  
pp. H316-H324 ◽  
Author(s):  
Richard Southworth ◽  
Pamela B. Garlick

The clinical hallmarks of hibernating myocardium include hypocontractility while retaining an inotropic reserve (using dobutamine echocardiography), having normal or increased [18F]fluoro-2-deoxyglucose-6-phosphate (18FDG6P) accumulation associated with decreased coronary flow [flow-metabolism mismatch by positron emission tomography (PET)], and recovering completely postrevascularization. In this study, we investigated an isolated rat heart model of hibernation using experimental equivalents of these clinical techniques. Rat hearts ( n = 5 hearts/group) were perfused with Krebs-Henseleit buffer for 40 min at 100% flow and 3 h at 10% flow and reperfused at 100% flow for 30 min (paced at 300 beats/min throughout). Left ventricular developed pressure fell to 30 ± 8% during 10% flow and recovered to 90 ± 7% after reperfusion. In an additional group, this recovery of function was found to be preserved over 2 h of reperfusion. Electron microscopic examination of hearts fixed at the end of the hibernation period demonstrated a lack of ischemic injury and an accumulation of glycogen granules, a phenomenon observed clinically. In a further group, hearts were challenged with dobutamine during the low-flow period. Hearts demonstrated an inotropic reserve at the expense of increased lactate leakage, with no appreciable creatine kinase release. PET studies used the same basic protocol in both dual- and globally perfused hearts (with 250MBq18FDG in Krebs buffer ± 0.4 mmol/l oleate). PET data showed flow-metabolism “mismatch;” whether regional or global,18FDG6P accumulation in ischemic tissue was the same as (glucose only) or significantly higher than (glucose + oleate) control tissue (0.023 ± 0.002 vs. 0.011 ± 0.002 normalized counts · s-1· g-1· min-1, P < 0.05) despite receiving 10% of the flow. This isolated rat heart model of acute hibernation exhibits many of the same characteristics demonstrated clinically in hibernating myocardium.


2013 ◽  
Vol 61 (10) ◽  
pp. E217
Author(s):  
Jeong-Su Kim ◽  
Ju-Hyun Park ◽  
Kook-Jin Chun ◽  
Young-Ho Jang ◽  
June-Hong Kim ◽  
...  

2021 ◽  
Author(s):  
Vladimir Jakovljevic ◽  
Sergey Vorobyev ◽  
Sergey Bolevich ◽  
Elena Morozova ◽  
Stefani Bolevich ◽  
...  

Abstract The main goal of this study was to investigate the cardioprotective properties in terms of effects on cardiodynamics of perfluorocarbon emulsion in ex vivo-induced ischemic-reperfusion injury of an isolated rat heart. The first part of the study aims to determine the dose of 10% perfluoroemulsion (PFT) that will show the best cardioprotective effect in rats on ex vivo-induced ischemic / reperfusion injury of an isolated rat heart. Depending on whether the animals received saline or PFT, the animals were divided into a control or experimental group, and depending on the application of a dose (8, 12, 16 ml / kg body weight) of saline or PFT. At a dose of 8 ml / kg, the results indicate statistically significantly lower values ​​of the maximum pressure growth rate in the group treated with 10% PFT compared to the control group treated with saline at R5 and R25 points. At a dose of 12 ml / kg, the maximum left ventricular pressure growth rate differed statistically significantly in the PFT group, ie there was an increase in this parameter at points R25 and R30, and the minimum left ventricular pressure growth rate in R15-R30 compared to saline-treated group. At a dose of 16 ml / kg, PFT also had a statistically significant effect on the change in cardiodynamic parameters in an isolated rat heart organ. Based on all the above, we can conclude that Peftoran administered immediately before ischemia (1 hour) has less positive effects on myocardial function in a model of an isolated rat heart compared to earlier administration (10 and 20 hours). Also, the effects of 10% peftoran solution are more pronounced if there is a longer period of time from application to ischemia, ie immediate application of peftoran before ischemia (1 hour) gave the weakest effects on the change of cardiodynamics of isolated rat heart.


Sign in / Sign up

Export Citation Format

Share Document