Temperature dependence of wheat development

2008 ◽  
Vol 56 (3) ◽  
pp. 313-320 ◽  
Author(s):  
K. Balla ◽  
O. Veisz

Among the abiotic stress factors influencing the growth and productivity of wheat varieties, extremely high temperatures have the most limiting effect. In an experiment set up in the gradient chamber of the Martonvásár phytotron to test the effect of various temperatures on four winter wheat varieties and one variety of spelt, substantial differences were observed in the heat stress tolerance of the varieties. There was a considerable reduction in the number of shoots and spikes as the result of heat stress, leading to a drastic loss of grain yield. It was clear from changes in the biomass and in the grain:straw ratio that extremely high temperatures led to a substantial reduction in the ratio of grain to straw in the varieties tested. In response to high temperature the wheat plants turned yellow earlier due to the rapid decomposition of the chlorophyll content. This resulted in a considerable shortening of the vegetation period and early ripening. Reductions in the parameters tested were observed at different temperature levels for each variety, indicating considerable differences in the ability of the varieties to adapt to abiotic stress factors.

Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1595
Author(s):  
Khussboo Rahman ◽  
Naznin Ahmed ◽  
Md. Rakib Hossain Raihan ◽  
Farzana Nowroz ◽  
Faria Jannat ◽  
...  

Jute (Corchorus spp.) belongs to the Malvaceae family, and there are two species of jute, C. capsularis and C. olitorious. It is the second-largest natural bast fiber in the world according to production, which has diverse uses not only as a fiber but also as multiple industrial materials. Because of climate change, plants experience various stressors such as salt, drought, heat, cold, metal/metalloid toxicity, and flooding. Although jute is particularly adapted to grow in hot and humid climates, it is grown under a wide variety of climatic conditions and is relatively tolerant to some environmental adversities. However, abiotic stress often restricts its growth, yield, and quality significantly. Abiotic stress negatively affects the metabolic activities, growth, physiology, and fiber yield of jute. One of the major consequences of abiotic stress on the jute plant is the generation of reactive oxygen species, which lead to oxidative stress that damages its cellular organelles and biomolecules. However, jute’s responses to abiotic stress mainly depend on the plant’s age and type and duration of stress. Therefore, understanding the abiotic stress responses and the tolerance mechanism would help plant biologists and agronomists in developing climate-smart jute varieties and suitable cultivation packages for adverse environmental conditions. In this review, we summarized the best possible recent literature on the plant abiotic stress factors and their influence on jute plants. We described the possible approaches for stress tolerance mechanisms based on the available literature.


2019 ◽  
Vol 19 ◽  
pp. 101146 ◽  
Author(s):  
Hidehiro Ishizawa ◽  
Minami Tada ◽  
Masashi Kuroda ◽  
Daisuke Inoue ◽  
Michihiko Ike

Sugar Tech ◽  
2014 ◽  
Vol 17 (2) ◽  
pp. 107-115
Author(s):  
A. Anna Durai ◽  
M. N. Premachandran ◽  
P. Govindaraj ◽  
P. Malathi ◽  
R. Viswanathan

Author(s):  
N.V. Terletskaya ◽  
T.N. Kobylina ◽  
Zh.A. Kenzhebayeva

Genus Sedum (family Crassulaceae) - succulents adapted to lack of moisture. Morphophysiological reactions of immature Sedum hybridum L. (Aizopsis hybrida (L.) Grulich) plants to stressful conditions of water scarcity, salinization and low positive temperatures are described. The high resistance of plants to the studied stress effects is shown. The tendency of the dynamics of the highest moisture loss by plants of the control group and the lowest by plants cultivated at PEG–6000 at a concentration of 200 mmol/l was noted, which indicates the adaptive effect of this level of osmotic stress on Sedum hybridum plants. To obtain a completely dry Sedum hybridum mass for various physiological experiments, it is necessary to maintain the plant material at a temperature of 105⸰ C, with at least 40 hours.


Sign in / Sign up

Export Citation Format

Share Document