Effect of abiotic stress factors on the chlorophyll content of inbred maize lines

2011 ◽  
Vol 59 (3) ◽  
pp. 201-207
Author(s):  
P. Bónis ◽  
T. Árendás ◽  
I. Jócsák ◽  
C. Mikecz ◽  
G. Micskei ◽  
...  

Inbred maize lines were treated with normal and double rates of post-emergence herbicides in a small-plot field experiment in one dry and one wet year. The chlorophyll a + b content of symptom-free ear-leaves was determined using a spectrophotometer after 50% silking in order to determine whether various rates of post-emergence herbicides had any effect on the chlorophyll content at flowering and how this was influenced by the type of year. The chlorophyll a + b content of the inbred lines was greatly dependent on the year, with values twice as high in the wet year as in the dry year. Treatment with tembotrione + isoxadifen-ethyl had no effect on the chlorophyll content in either year. Both rates of mesotrione + terbutylazine reduced the chlorophyll a + b content of one stress-sensitive inbred line in the dry year, but not in the wet year. In the wet year bentazone + dicamba increased the chlorophyll content, but only for one line was this effect significant irrespective of the dose. In the dry year the double dose caused a significant increase in this genotype, but the chlorophyll contents of the other lines did not differ significantly from the control.

Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1595
Author(s):  
Khussboo Rahman ◽  
Naznin Ahmed ◽  
Md. Rakib Hossain Raihan ◽  
Farzana Nowroz ◽  
Faria Jannat ◽  
...  

Jute (Corchorus spp.) belongs to the Malvaceae family, and there are two species of jute, C. capsularis and C. olitorious. It is the second-largest natural bast fiber in the world according to production, which has diverse uses not only as a fiber but also as multiple industrial materials. Because of climate change, plants experience various stressors such as salt, drought, heat, cold, metal/metalloid toxicity, and flooding. Although jute is particularly adapted to grow in hot and humid climates, it is grown under a wide variety of climatic conditions and is relatively tolerant to some environmental adversities. However, abiotic stress often restricts its growth, yield, and quality significantly. Abiotic stress negatively affects the metabolic activities, growth, physiology, and fiber yield of jute. One of the major consequences of abiotic stress on the jute plant is the generation of reactive oxygen species, which lead to oxidative stress that damages its cellular organelles and biomolecules. However, jute’s responses to abiotic stress mainly depend on the plant’s age and type and duration of stress. Therefore, understanding the abiotic stress responses and the tolerance mechanism would help plant biologists and agronomists in developing climate-smart jute varieties and suitable cultivation packages for adverse environmental conditions. In this review, we summarized the best possible recent literature on the plant abiotic stress factors and their influence on jute plants. We described the possible approaches for stress tolerance mechanisms based on the available literature.


2019 ◽  
Vol 19 ◽  
pp. 101146 ◽  
Author(s):  
Hidehiro Ishizawa ◽  
Minami Tada ◽  
Masashi Kuroda ◽  
Daisuke Inoue ◽  
Michihiko Ike

Sugar Tech ◽  
2014 ◽  
Vol 17 (2) ◽  
pp. 107-115
Author(s):  
A. Anna Durai ◽  
M. N. Premachandran ◽  
P. Govindaraj ◽  
P. Malathi ◽  
R. Viswanathan

Author(s):  
N.V. Terletskaya ◽  
T.N. Kobylina ◽  
Zh.A. Kenzhebayeva

Genus Sedum (family Crassulaceae) - succulents adapted to lack of moisture. Morphophysiological reactions of immature Sedum hybridum L. (Aizopsis hybrida (L.) Grulich) plants to stressful conditions of water scarcity, salinization and low positive temperatures are described. The high resistance of plants to the studied stress effects is shown. The tendency of the dynamics of the highest moisture loss by plants of the control group and the lowest by plants cultivated at PEG–6000 at a concentration of 200 mmol/l was noted, which indicates the adaptive effect of this level of osmotic stress on Sedum hybridum plants. To obtain a completely dry Sedum hybridum mass for various physiological experiments, it is necessary to maintain the plant material at a temperature of 105⸰ C, with at least 40 hours.


Sign in / Sign up

Export Citation Format

Share Document