Effect of GnRH and its antagonist (Antarelix) on LH release from cultured bovine anterior pituitary cells

2002 ◽  
Vol 50 (1) ◽  
pp. 79-92 ◽  
Author(s):  
Annett Bellmann ◽  
F. Schneider ◽  
W. Kanitz ◽  

In the following investigations, the LH secretion of cells from pituitaries in heifers on days 16-18 of their oestrous cycle (n = 14) was analysed. Cells were dissociated with trypsin and collagenase and maintained in a static culture system. For the estimation of LH release, the cells were incubated with various concentrations of mammalian GnRH (Lutrelef) for 6h. To determine the action of Antarelix (GnRH antagonist), the cells were preincubated for 1 h with concentrations of 10-5 or 10-4 M Antarelix followed by 10-6 M GnRH coincubation for a further 6h. At the end of each incubation, the medium was collected for LH analysis. Parallel, intracellular LH was qualitatively detected by immunocytochemistry. Changes in the intensity of LH staining within the cells in dependence of different GnRH concentrations were not observed, but a significant increase LH secretion in pituitary cells was measured at 10-6 M GnRH. Antarelix had no effect on basal LH secretion at concentrations of 10-4 and 10-5 M. After coincubation of pituitary cells with Antarelix and GnRH, Antarelix blocked the GnRH-stimulated LH secretion with a maximal effect of 10-4 M, but the staining of immunoreactive intracellular LH was detected at approximately the same level compared to the pituitary cells treated with exogenous GnRH alone. These data demonstrate that Antarelix is effective in influencing the GnRH-stimulated LH secretion of pituitary cells in vitro. After administration of Antarelix in vivo, the GnRH-stimulated LH secretion of cultured pituitary cells was not inhibited.

1983 ◽  
Vol 61 (2) ◽  
pp. 186-189 ◽  
Author(s):  
Noboru Fujihara ◽  
Masataka Shiino

The effect of thyrotrophin-releasing hormone (TRH, 10−7 M) on luteinizing hormone (LH) release from rat anterior pituitary cells was examined using organ and primary cell culture. The addition of TRH to the culture medium resulted in a slightly enhanced release of LH from the cultured pituitary tissues. However, the amount of LH release stimulated by TRH was not greater than that produced by luteinizing hormone – releasing hormone (LH–RH, 10−7 M). Actinomycin D (2 × 10−5 M) and cycloheximide (10−4 M) had an inhibitory effect on the action of TRH on LH release. The inability of TRH to elicit gonadotrophin release from the anterior pituitary glands in vivo may partly be due to physiological inhibition of its action by other hypothalamic factor(s).


2003 ◽  
Vol 228 (1) ◽  
pp. 64-69 ◽  
Author(s):  
Iulia C. Alexandreanu ◽  
David M. Lawson

The objectives of this study were to determine if heme oxygenase (HO), which catalyzes the degradation of heme and the formation of carbon monoxide (CO), is localized in the rat anterior pituitary and, if so, to determine if hemin (a substrate for HO) or chromium mesoporphyrin (CrMP) (an inhibitor of HO), alter pituitary gonadotropin and prolactin secretion. For localization of HO, sections of anterior pituitaries obtained from mature Holtzman Sprague-Dawley rats in different stages of the estrous cycle were immunostained for two of the HO isoforms, HO-1 and HO-2. The immunostaining for the inducible HO isoform (HO-1) was limited to discrete populations of pituitary cells, whereas the constitutive isoform (HO-2) had a more widespread distribution. The afternoon surge of leutinizing hormone (LH) in the plasma of ovariectomized, estradiol-treated rats was advanced by 2 hr after 7 days of treatment with CrMP (4 μM/kg), and this effect was reversed when hemin (30 μM/kg) was coadministered with CrMP. The afternoon follicle-stimulating hormone (FSH) surge was not affected by either treatment. In contrast, the afternoon prolactin (PRL) surge was completely blocked or delayed by CrMP treatment, and this effect was not reversed by hemin. In vitro perifusion of pituitary explants with CrMP also significantly reduced PRL release compared with secretion from untreated explants. In vitro gonadotropin-releasing hormone (GnRH)-stimulated FSH secretion was significantly increased from pituitary explants of ovariectomized, estradiol-treated rats treated in vivo with hemin but was unaffected by CrMP treatment, whereas GnRH-stimulated LH release was not affected by hemin but was increased by CrMP treatment. In conclusion, this study demonstrates that HO exists in the rat anterior pituitary gland, and that a substrate and an inhibitor of this enzyme alter the secretion of gonadotropins and PRL.


2016 ◽  
Vol 35 (4) ◽  
pp. 463-475 ◽  
Author(s):  
Sonia A. Ronchetti ◽  
María S. Bianchi ◽  
Beatriz H. Duvilanski ◽  
Jimena P. Cabilla

Inorganic arsenic (iAs) is at the top of toxic metalloids. Inorganic arsenic-contaminated water consumption is one of the greatest environmental health threats worldwide. Human iAs exposure has been associated with cancers of several organs, neurological disorders, and reproductive problems. Nevertheless, there are no reports describing how iAs affects the anterior pituitary gland. The aim of this study was to investigate the mechanisms involved in iAs-mediated anterior pituitary toxicity both in vivo and in vitro. We showed that iAs administration (from 5 to 100 ppm) to male rats through drinking water increased messenger RNA expression of several oxidative stress-responsive genes in the anterior pituitary gland. Serum prolactin levels diminished, whereas luteinizing hormone (LH) levels were only affected at the higher dose tested. In anterior pituitary cells in culture, 25 µmol/L iAs significantly decreased prolactin release in a time-dependent fashion, whereas LH levels remained unaltered. Cell viability was significantly reduced mainly by apoptosis evidenced by morphological and phosphatidylserine externalization studies. This process is characterized by early depolarization of mitochondrial membrane potential and increased levels of reactive oxygen species. Expression of some key oxidative stress-responsive genes, such as heme oxygenase-1 and metallothionein-1, was also stimulated by iAs exposure. The antioxidant N-acetyl cysteine prevented iAs-induced effects on the expression of oxidative stress markers, prolactin release, and apoptosis. In summary, the present work demonstrates for the first time that iAs reduces prolactin release both in vivo and in vitro and induces apoptosis in anterior pituitary cells, possibly resulting from imbalanced cellular redox status.


1987 ◽  
Vol 253 (3) ◽  
pp. E233-E237
Author(s):  
R. S. Chuknyiska ◽  
M. R. Blackman ◽  
G. S. Roth

We measured in vitro release of luteinizing hormone (LH) in the presence of 1.5 mM extracellular calcium, with and without LH-releasing hormone (LHRH; 10(-10) to 10(-7) M) or the ionophore A23187 (10(-7) to 10(-4) M), in primary cultures of anterior pituitary cells from intact mature (6 mo) and old (24 mo) male and intact and ovariectomized mature and old female Wistar rats. Base-line as well as LHRH- and A23187-mediated LH secretion was decreased from cells of old rats. However, exposure to A23187 led to a nearly twofold greater augmentation of LH release from cells of old rats, thus decreasing the apparent age-related LH secretory deficit by approximately one-half. We then measured LHRH-mediated (10(-8) M) vs. A23187-mediated (10(-4) M) LH release with and without extracellular calcium (0.08-1.5 mM). For cells from both mature and old rats, there was a similar calcium dependency for A23187- and LHRH-mediated LH release, with optimal LH secretion at 1.0-1.5 mM extracellular calcium concentrations. Again, both LHRH- and A23187-stimulated LH release was significantly lower and exposure to A23187 led to a greater increase in LH release from cells of old rats. Taken together with similar findings in other systems, these data suggest that the in vitro LH secretory defect of pituitary cells from old rats results in part from one or more defects in calcium mobilization and that such alterations may be a widespread manifestation of aging.


1995 ◽  
Vol 145 (1) ◽  
pp. 113-119 ◽  
Author(s):  
J J Evans ◽  
S J Hurd ◽  
D R Mason

Abstract Although GnRH is believed to be the primary secretagogue for LH, oxytocin has also been shown to stimulate LH release from the anterior pituitary. We investigated the possibility that the two secretagogues interact in the modulation of LH release. Anterior pituitaries were removed from adult female rats at pro-oestrus, and tissue pieces were pre-incubated in oxytocin for 3 h prior to being stimulated with 15 min pulses of GnRH. LH output over the 1 h period from the beginning of the GnRH pulse was determined. Control incubations were carried out in the absence of oxytocin, and background secretory activities without GnRH stimulation were also determined. Tissue which was pre-exposed to oxytocin (0·012–1·25 μm) had an increased LH response to GnRH (1·25 nm). The increase was larger than the sum of the LH outputs obtained with oxytocin and GnRH separately, revealing that oxytocin synergistically enhanced LH secretion elicited by GnRH (P<0·05; ANOVA). If stimulation by GnRH was delayed for 2 h after incubation with oxytocin, an increase in LH secretion was still observed, indicating that oxytocin-induced modulation did not rapidly disappear. Oxytocin pre-incubation was observed to result in an increase of maximal GnRH-induced LH output (P<0·001; t-test), as well as an increase of intermediate responses. The LH response of the anterior pituitary to subsequent pulses of GnRH was modified by the self-priming process. The effect of oxytocin pretreatment on the response of primed tissue to GnRH was also investigated. It was found that pre-incubation in oxytocin also enhanced the LH response of primed tissue to GnRH. The study has revealed that oxytocin increases the LH output of anterior pituitary tissue in response to GnRH. The effect occurs on both GnRH-primed and unprimed tissues. The results suggest that oxytocin has the potential to regulate the dynamics of the pro-oestrous LH surge. Journal of Endocrinology (1995) 145, 113–119


Endocrinology ◽  
2007 ◽  
Vol 148 (4) ◽  
pp. 1736-1744 ◽  
Author(s):  
Amy M. Navratil ◽  
J. Gabriel Knoll ◽  
Jennifer D. Whitesell ◽  
Stuart A. Tobet ◽  
Colin M. Clay

The secretion of LH is cued by the hypothalamic neuropeptide, GnRH. After delivery to the anterior pituitary gland via the hypothalamic-pituitary portal vasculature, GnRH binds to specific high-affinity receptors on the surface of gonadotrope cells and stimulates synthesis and secretion of the gonadotropins, FSH, and LH. In the current study, GnRH caused acute and dramatic changes in cellular morphology in the gonadotrope-derived αT3-1 cell line, which appeared to be mediated by engagement of the actin cytoskeleton; disruption of actin with jasplakinolide abrogated cell movement and GnRH-induced activation of ERK. In live murine pituitary slices infected with an adenovirus-containing Rous sarcoma virus-green fluorescent protein, selected cells responded to GnRH by altering their cellular movements characterized by both formation and extension of cell processes and, surprisingly, spatial repositioning. Consistent with the latter observation, GnRH stimulation increased the migration of dissociated pituitary cells in transwell chambers. Our data using live pituitary slices are a striking example of neuropeptide-evoked movements of cells outside the central nervous system and in a mature peripheral endocrine organ. These findings call for a fundamental change in the current dogma of simple passive diffusion of LH from gonadotropes to capillaries in the pituitary gland.


1994 ◽  
Vol 142 (1) ◽  
pp. 139-144 ◽  
Author(s):  
C Aurich ◽  
S Schlote ◽  
H-O Hoppen ◽  
E Klug ◽  
H Hoppe ◽  
...  

Abstract To investigate an involvement of endogenous opioids in the regulation of circannual changes in reproductive activity, effects of the opioid antagonist naloxone on the concentration of immunoreactive and bioactive luteinizing hormone (LH) in plasma were measured in mares during the anovulatory season. Naloxone (0·5 mg/kg i.v.) caused a significant increase (P<0·05) in immunoreactive as well as bioactive LH concentration in plasma. The amplitude of the increase in LH concentrations measured with an in vitro bioassay was more pronounced than the amplitude of the increase in LH secretion determined by radioimmunoassay. This indicates that although in seasonal anovulatory mares the bioactivity of LH in plasma is low, highly bioactive LH is present in the anterior pituitary and can be released by naloxone. The LH response to naloxone did not depend on the degree of ovarian follicular activity. It can be concluded that a tonic opioid inhibition of LH release is present in mares during at least part of the anovulatory season and that endogenous opioids seem to be involved in the regulation of seasonal reproductive activity in the horse. In contrast to the situation during the breeding season, the opioid systems regulating LH release are activated independently of luteal progesterone. Journal of Endocrinology (1994) 142, 139–144


2017 ◽  
Vol 233 (2) ◽  
pp. 159-174 ◽  
Author(s):  
Nilli Zmora ◽  
Ten-Tsao Wong ◽  
John Stubblefield ◽  
Berta Levavi-Sivan ◽  
Yonathan Zohar

Kisspeptin and neurokinin B (NKB) are neuropeptides co-expressed in the mammalian hypothalamus and coordinately control GnRH signaling. We have found that Nkb and kisspeptin neurons are distinct in the teleost, striped bass (STB) and capitalized on this phenomenon to study the mode of action of Nkb and its related neuropeptide-F (Nkf), both of which are encoded by the tac3 gene. In vitro brain slices and in vivo administration studies revealed that Nkb/f consistently downregulated kiss2, whereas antagonist (AntD) administration restored this effect. Overall, a minor effect was noted on gnrh1 expression, whereas Gnrh1 content in the pituitaries was reduced after Nkb/f treatment and increased with AntD. Concomitantly, immunostaining demonstrated that hypothalamic Nkb neurons border and densely innervate the largest kiss2 neuronal population in the hypothalamus, which also coexpresses Nkb receptor. No expression of Nkb receptor or Nkb neuronal projections was detected near/in Gnrh1 soma in the preoptic area. At the level of the pituitary, however, the picture was more complex: both Nkb/f and AntD upregulated lhb and fshb expression and Lh secretion in vivo. Together with the stimulatory effect of Nkb/f on Lh/Fsh secretion from pituitary cells, in vitro, this may indicate an additional independent action of Nkb/f within the pituitary, in which the hypothalamic pathway is more dominant. The current study demonstrates that Nkb/f utilizes multiple pathways to regulate reproduction in the STB and that in the brain, Nkb mainly acts as a negative modulator of kiss2 to regulate the release of Gnrh1.


1992 ◽  
Vol 132 (2) ◽  
pp. 277-283 ◽  
Author(s):  
G. Robinson ◽  
J. J. Evans ◽  
K. J. Catt

ABSTRACT Gonadotrophin-releasing activity of oxytocin has previously been demonstrated in vitro and in vivo. This study investigated whether oxytocin is also able to induce LH accumulation in pituitary cells. Following trypsin digestion and mechanical dispersion, pituitary cells from female rats were incubated with oxytocin (100 nmol/l) for 24 h. LH release stimulated by oxytocin increased (P < 0·001) progressively during the incubation indicating a different secretory pattern from the more rapid but less sustained secretion stimulated by gonadotrophin-releasing hormone. Oxytocin also enhanced (P < 0·01) total LH accumulation in the incubation system (released plus cell contents) which was apparent after 7–11 h of stimulation. The release of LH stimulated by oxytocin was reduced by the protein synthesis inhibitor cycloheximide (10 μmol/l). However, cycloheximide did not completely block oxytocin-stimulated LH release; there remained some LH release above that seen in non-stimulated controls (P < 0·01) revealing the presence of a cycloheximide-resistant component in the release mechanism. Furthermore, accumulation of total LH in 24 h incubations was suppressed (P < 0·01) by cycloheximide. The advancement in LH release which oxytocin has been shown to induce in vivo in pro-oestrous rats was accompanied by an early reduction of pituitary LH stores. However, the fall normally observed in LH content during the surge was markedly attenuated by the oxytocin treatment. Thus, loss of pituitary LH stores was less in oxytocin-treated rats than in saline-treated controls, even though net LH release into plasma was increased. Therefore, oxytocin stimulated the replenishment of LH stores. Although the mechanism(s) remains to be defined and the relationships between in-vitro and in-vivo results are as yet uncharacterized, the present study demonstrates that oxytocin treatment stimulates LH production in both dispersed cells and intact pituitaries in situ. Journal of Endocrinology (1992) 132, 277–283


1990 ◽  
Vol 127 (1) ◽  
pp. 149-159 ◽  
Author(s):  
S. Muttukrishna ◽  
P. G. Knight

ABSTRACT Primary cultures of ovine pituitary cells (from adult ewes) were used to investigate the actions of steroid-free bovine follicular fluid (bFF) and highly-purified Mr 32 000 bovine inhibin on basal and gonadotrophin-releasing hormone (GnRH)-induced release of FSH and LH. Residual cellular contents of each hormone were also determined allowing total gonadotrophin content/well to be calculated. As in rats, both crude and highly purified inhibin preparations promoted a dose (P < 0·001)- and time (P < 0·001)-dependent suppression of basal and GnRH-induced release of FSH as well as an inhibition of FSH synthesis, reflected by a fall in total FSH content/well. However, while neither inhibin preparation affected basal release of LH or total LH content/well, GnRH-induced LH release was significantly (P< 0·001) increased by the presence of either bFF (+ 75%) or highly-purified inhibin (+ 64%) in a dose- and time-dependent manner. This unexpected action of bFF on GnRH-induced LH release was abolished in the presence of 5 μl specific anti-inhibin serum, confirming that the response was indeed mediated by inhibin. Furthermore, neither oestradiol-17β (1 pmol/l–10 nmol/l) nor monomeric α-subunit of bovine inhibin (2·5–40 ng/ml) significantly affected basal or GnRH-induced release of LH. These in-vitro findings for the ewe lend support to a number of recent in-vivo observations and indicate that, in addition to its well-documented suppressive effect on the synthesis and secretion of FSH, inhibin may actually facilitate LH release in this species, in marked contrast to its action in the rat. Journal of Endocrinology (1990) 127, 149–159


Sign in / Sign up

Export Citation Format

Share Document