Measurement of thermal conductivity of building insulation foams by modulated differential scanning calorimetry — Critical review & observations

2012 ◽  
Vol 3 (2) ◽  
pp. 157-162
Author(s):  
J.-F. Masson ◽  
S. Bundalo-Perc ◽  
P. Mukhopadhyaya

Abstract The rise in energy prices, the need to conserve energy and the pressure to protect the environment promote the development of innovative eco-friendly thermal insulating foams for building applications. In this quest, a rapid and accurate method to measure the thermal conductivity of new foams is required during the research and product development stage. Temperature-modulated differential scanning calorimetry (MDSC) provides thermal conductivity values from heat capacity measurements on cylindrical samples less than about 20 mg in weight. This method is the basis of the ASTM E1952 standard method “Thermal Conductivity and Thermal Diffusivity by Modulated Differential Scanning Calorimetry”. In this work, the MDSC and the ASTM E1952 test methods are applied to thermal insulating foams used in construction applications. Measurements on polystyrene, polyurethane, and polyisocyanurate insulations demonstrate that MDSC possesses excellent repeatability, but its application through ASTM E 1952 provides inaccurate thermal conductivity values. Two sources of errors were identified, 1) the use of nitrogen as a purge gas, and 2) the use of an equation that inaccurately relates the measured heat capacity to thermal conductivity. Methods around these difficulties exist, but they remain untested with insulating foams.

Polymers ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 5 ◽  
Author(s):  
César Leyva-Porras ◽  
Pedro Cruz-Alcantar ◽  
Vicente Espinosa-Solís ◽  
Eduardo Martínez-Guerra ◽  
Claudia I. Piñón-Balderrama ◽  
...  

Phase transition issues in the field of foods and drugs have significantly influenced these industries and consequently attracted the attention of scientists and engineers. The study of thermodynamic parameters such as the glass transition temperature (Tg), melting temperature (Tm), crystallization temperature (Tc), enthalpy (H), and heat capacity (Cp) may provide important information that can be used in the development of new products and improvement of those already in the market. The techniques most commonly employed for characterizing phase transitions are thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), thermomechanical analysis (TMA), and differential scanning calorimetry (DSC). Among these techniques, DSC is preferred because it allows the detection of transitions in a wide range of temperatures (−90 to 550 °C) and ease in the quantitative and qualitative analysis of the transitions. However, the standard DSC still presents some limitations that may reduce the accuracy and precision of measurements. The modulated differential scanning calorimetry (MDSC) has overcome some of these issues by employing sinusoidally modulated heating rates, which are used to determine the heat capacity. Another variant of the MDSC is the supercooling MDSC (SMDSC). SMDSC allows the detection of more complex thermal events such as solid–solid (Ts-s) transitions, liquid–liquid (Tl-l) transitions, and vitrification and devitrification temperatures (Tv and Tdv, respectively), which are typically found at the supercooling temperatures (Tco). The main advantage of MDSC relies on the accurate detection of complex transitions and the possibility of distinguishing reversible events (dependent on the heat capacity) from non-reversible events (dependent on kinetics).


Pharmaceutics ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 670 ◽  
Author(s):  
Maximilian Karl ◽  
Jukka Rantanen ◽  
Thomas Rades

Thermal conductivity is a material specific property, which influences many aspects of pharmaceutical development, such as processing, modelling, analysis, and the development of novel formulation approaches. We have presented a method to measure thermal conductivity of small molecule organic glasses, based on a vacuum molding sample preparation technique combined with modulated differential scanning calorimetry. The method is applied to the two amorphous model compounds indomethacin and celecoxib. The measured values of below 0.2 W/m °C indicate very low thermal conductivity of the amorphous compounds, within the range of organic liquids and low conducting polymers.


2009 ◽  
Vol 81 (10) ◽  
pp. 1931-1952 ◽  
Author(s):  
Bernhard Wunderlich

With standard differential scanning calorimetry (DSC), it is possible to derive calorimetric data for equilibrium or metastable samples. The introduction of temperature-modulated DSC (TMDSC) permits in its quasi-isothermal (non-scanning) mode (TMDC), long-time apparent heat capacity measurements of high precision (±1 %). For flexible molecules, heat capacity measurements from the various calorimetric methods could be combined in the ATHAS Data Bank, which now contains experimental data for over 200 materials. These data were linked to the vibrational and large-amplitude motion of the constituent atoms and molecules, to provide a base for the judgement of the thermal analyses, extending outside the range of equilibrium or metastability with an error of only 2-5 %. The TMDC together with DSC is now able to quantitatively assess the reversibility of thermal processes. A sufficient number of systems have been analyzed in this fashion to develop better understanding of macro-, micro-, and nanophases of flexible macromolecules. The new concepts discussed are: (1) multiple glass transitions due to possible rigid-amorphous fractions (RAFs) and glass transitions within crystals, both observed in semicrystalline macromolecules, and (2) locally reversibly melting on the surface of chain-folded crystals. The locally reversible melting decreases with crystal perfection and also disappears when the chains become rigid.


2020 ◽  
Vol 49 (1-2) ◽  
pp. 75-87
Author(s):  
ERHARD KASCHNITZ ◽  
PETER HOFER-HAUSER ◽  
WALTER FUNK

Selected thermophysical properties of the hot work tool steel AISI H11 (1.2343) were measured in the temperature range from room temperature to the melting temperature. Thermal diffusivity was measured by the laser-flash method; heat capacity by differential scanning calorimetry; linear thermal expansion by push-rod dilatometry; and density at room temperature by an Archimedean balance. From these experimentally obtained data, thermal conductivity was calculated. Additionally, electrical resistivity of AISI H11 (1.2343) was measured by millisecond pulse-heating in the above mentioned temperature range. The measurement results of electrical resistivity as a function of specific enthalpy was combined with results of specific heat capacity measurements by differential-scanning calorimetry to obtain the relation between resistivity and temperature. Based on measured electrical resistivity and thermal conductivity, a Smith-Palmer-plot for the hot work tool steel AISI H11 (1.2343) is obtained for the ferritic and austenitic phases. No linear behaviour – as expected by the Wiedemann-Franz law – is observed in the ferritic phase region. In the high temperature austenitic region, the thermal conductivity can be computed from electrical resistivity using empirical constants of similar austenitic steels or superalloys.


Sign in / Sign up

Export Citation Format

Share Document