Failure Mechanisms of Fiber Optic Temperature Sensors in High Temperature and Vibration Environments

MRS Advances ◽  
2016 ◽  
Vol 1 (35) ◽  
pp. 2427-2437
Author(s):  
Loucas Tsakalakos ◽  
Uttara A. Dani ◽  
Boon K. Lee ◽  
Susanne M. Lee ◽  
Sudeep Mandal ◽  
...  

ABSTRACTFiber optic temperature sensors are used in a variety of harsh environment applications. We have explored use of such temperature sensors in commercial gas turbines to measure the temperature at various regions of interest within the turbine system. More specifically, fiber optic temperature rakes were designed and installed on a commercial gas turbine under full load conditions. This work will focus on failure mechanisms observed at multiple length scales that impact the performance of high temperature optical fiber sensors. It was found that Au-coated silica fibers, which are a standard in the industry, undergo various failure modes when subjected to combinations of high temperature and high vibration. More specifically, the Au coating became soft/ductile as the temperature is increased. We also observed that the Au coating was not well bonded to the silica fiber, as expected since there were no adhesion layers present. These effects led to significant damage of the fiber optic under high vibrations. We also found that vibrations from the gas turbine coupled into fundamental modes of the fiber optic probe assembly, which were analyzed by detailed dynamic mechanical analysis. This led to the fiber impacting the internal wall of the probe assembly, which caused further damage and failure of the fiber and the Au coating. The silica fibers returned from the field also exhibited significant twisting throughout most of their length. This suggests the fibers reached temperatures above their strain point (about 1000 C for pure silica glass), which is explained by either a) the strain point had been significantly reduced by the presence of the Ge dopant, or b) the temperature was higher than expected in the gas turbine exhaust region. It was also hypothesized that complex anelastic effects may play a role under the high temperature, high vibration environment experienced by the probes. Detailed structural analysis of the fiber optic temperature sensors by scanning electron microscopy, ToF-SIMS, and X-ray microscopy will be presented to corroborate the above simulations and proposed damage mechanisms. Finally, we note that the fiber Bragg gratings (FBG) present within the temperature probes provided promising temperature data, and were in fact not damaged/erased by the high temperature environment.

2004 ◽  
Author(s):  
Robert Fielder ◽  
Matthew Palmer ◽  
Wing Ng ◽  
Matthew Davis ◽  
Aditya Ringshia

1995 ◽  
Vol 34 (34) ◽  
pp. 8019 ◽  
Author(s):  
E. Maurice ◽  
G. Monnom ◽  
B. Dussardier ◽  
A. Saïssy ◽  
D. B. Ostrowsky ◽  
...  

2018 ◽  
Vol 18 (21) ◽  
pp. 8755-8761 ◽  
Author(s):  
Kelly M. McCary ◽  
Brandon A. Wilson ◽  
Anthony Birri ◽  
Thomas E. Blue

2014 ◽  
Vol 102 (7) ◽  
pp. 2932-2938 ◽  
Author(s):  
Paula Rinaudo ◽  
Benjamín Torres Górriz ◽  
David Barrera Villar ◽  
Ignacio Payá Zaforteza ◽  
Pedro Calderon Garcia ◽  
...  

Author(s):  
Michele Scervini ◽  
Catherine Rae

A new Nickel based thermocouple for high temperature applications in gas turbines has been devised at the Department of Material Science and Metallurgy of the University of Cambridge. This paper describes the new features of the thermocouple, the drift tests on the first prototype and compares the behaviour of the new sensor with conventional mineral insulated metal sheathed Type K thermocouples: the new thermocouple has a significant improvement in terms of drift and temperature capabilities. Metallurgical analysis has been undertaken on selected sections of the thermocouples exposed at high temperatures which rationalises the reduced drift of the new sensor. A second prototype will be tested in follow-on research, from which further improvements in drift and temperature capabilities are expected.


Author(s):  
Keisuke Makino ◽  
Ken-Ichi Mizuno ◽  
Toru Shimamori

NGK Spark Plug Co., Ltd. has been developing various silicon nitride materials, and the technology for fabricating components for ceramic gas turbines (CGT) using theses materials. We are supplying silicon nitride material components for the project to develop 300 kW class CGT for co-generation in Japan. EC-152 was developed for components that require high strength at high temperature, such as turbine blades and turbine nozzles. In order to adapt the increasing of the turbine inlet temperature (TIT) up to 1,350 °C in accordance with the project goals, we developed two silicon nitride materials with further unproved properties: ST-1 and ST-2. ST-1 has a higher strength than EC-152 and is suitable for first stage turbine blades and power turbine blades. ST-2 has higher oxidation resistance than EC-152 and is suitable for power turbine nozzles. In this paper, we report on the properties of these materials, and present the results of evaluations of these materials when they are actually used for CGT components such as first stage turbine blades and power turbine nozzles.


Author(s):  
Dieter Bohn ◽  
Nathalie Po¨ppe ◽  
Joachim Lepers

The present paper reports a detailed technological assessment of two concepts of integrated micro gas turbine and high temperature (SOFC) fuel cell systems. The first concept is the coupling of micro gas turbines and fuel cells with heat exchangers, maximising availability of each component by the option for easy stand-alone operation. The second concept considers a direct coupling of both components and a pressurised operation of the fuel cell, yielding additional efficiency augmentation. Based on state-of-the-art technology of micro gas turbines and solid oxide fuel cells, the paper analyses effects of advanced cycle parameters based on future material improvements on the performance of 300–400 kW combined micro gas turbine and fuel cell power plants. Results show a major potential for future increase of net efficiencies of such power plants utilising advanced materials yet to be developed. For small sized plants under consideration, potential net efficiencies around 70% were determined. This implies possible power-to-heat-ratios around 9.1 being a basis for efficient utilisation of this technology in decentralised CHP applications.


2004 ◽  
Author(s):  
Juncheng Xu ◽  
Gary Pickrell ◽  
Bing Yu ◽  
Ming Han ◽  
Yizheng Zhu ◽  
...  

2009 ◽  
Vol 13 (4) ◽  
pp. 41-48
Author(s):  
Zheshu Ma ◽  
Zhenhuan Zhu

Indirectly or externally-fired gas-turbines (IFGT or EFGT) are novel technology under development for small and medium scale combined power and heat supplies in combination with micro gas turbine technologies mainly for the utilization of the waste heat from the turbine in a recuperative process and the possibility of burning biomass or 'dirty' fuel by employing a high temperature heat exchanger to avoid the combustion gases passing through the turbine. In this paper, by assuming that all fluid friction losses in the compressor and turbine are quantified by a corresponding isentropic efficiency and all global irreversibilities in the high temperature heat exchanger are taken into account by an effective efficiency, a one dimensional model including power output and cycle efficiency formulation is derived for a class of real IFGT cycles. To illustrate and analyze the effect of operational parameters on IFGT efficiency, detailed numerical analysis and figures are produced. The results summarized by figures show that IFGT cycles are most efficient under low compression ratio ranges (3.0-6.0) and fit for low power output circumstances integrating with micro gas turbine technology. The model derived can be used to analyze and forecast performance of real IFGT configurations.


Sign in / Sign up

Export Citation Format

Share Document