Photovoltaics: Upconversion Configurations versus Tandem Cells

MRS Advances ◽  
2017 ◽  
Vol 2 (52) ◽  
pp. 2997-3004 ◽  
Author(s):  
Joop van Deelen

ABSTRACTFor a wide range of bandgaps of solar cell materials, the potential contribution of upconversion materials was calculated and related to various configurations of the solar cell and upconversion layers. Moreover, by comparing these various strategies with the potential of a dual junction tandem cell configuration, a compelling case is made for upconverters.At idealized 100% conversion efficiency, the upconverter with a single junction cell is more efficient than a dual junction tandem cell. It was also found that a single junction cell with an upconverter that is ‘only’ 80% efficient has a similar efficiency as an ideal dual junction cell. This result shows that upconverters are certainly a route worthwhile to pursue, especially because the single junction cells plus upconverters could have more cost reduction potential than dual junction cell configurations.Additionally, it was investigated if an upconverter that uses two different photon energies would create a large surplus in efficiency. For a cell band gap of 1.55 eV a theoretical maximum efficiency (here defined as Voc*Isc) of 54.5% was calculated. Although there is a further increase in efficiency compared to converters with a single conversion energy, very careful bandgap tuning with a tolerance < 0.02 eV is required, which makes this system rather sensitive for material and solar spectrum fluctuations and it is suggested that a simple upconverter material is a more favorable strategy.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
A. Mesrane ◽  
F. Rahmoune ◽  
A. Mahrane ◽  
A. Oulebsir

The tunability of the InGaN band gap energy over a wide range provides a good spectral match to sunlight, making it a suitable material for photovoltaic solar cells. The main objective of this work is to design and simulate the optimal InGaN single-junction solar cell. For more accurate results and best configuration, the optical properties and the physical models such as the Fermi-Dirac statistics, Auger and Shockley-Read-Hall recombination, and the doping and temperature-dependent mobility model were taken into account in simulations. The single-junction In0.622Ga0.378N (Eg = 1.39 eV) solar cell is the optimal structure found. It exhibits, under normalized conditions (AM1.5G, 0.1 W/cm2, and 300 K), the following electrical parameters:Jsc=32.6791 mA/cm2,Voc=0.94091volts, FF = 86.2343%, andη=26.5056%. It was noticed that the minority carrier lifetime and the surface recombination velocity have an important effect on the solar cell performance. Furthermore, the investigation results show that the In0.622Ga0.378N solar cell efficiency was inversely proportional with the temperature.


Trees and other forms of vegetation are well designed for the collection and storage of solar energy. Moreover, photosynthetic organisms show enormous diversity and are well adapted for a wide range of environments. Biomass is convertible to liquid and gaseous fuels by a number of established processes, and this paper examines the possible contribution of biomass to world energy demands. The maximum efficiency of solar energy conversion in plant production is 5-6 %, but plants grown under usual field conditions do not achieve this degree of conversion. The highest yielding crops convert solar energy into plant material with an efficiency of 1-2%, but the average yields of the major crops and forests indicate considerably lower efficiencies. The average efficiency of solar energy conversion on a global scale is estimated as about 0.15 %. The energy content of the annual biomass residues in Australia and U.S.A. is equal to about one-quarter of the primary energy use in those countries, but only about one-third of the residues are considered to be readily recoverable. A number of high yielding crops are examined as potential fuel crops. Energy inputs for growing non-irrigated crops in Australia are estimated to amount to 7-17 % of the solar energy stored in the total crop biomass. Irrigation adds considerably to the energy cost of producing crops. The overall energy efficiency of fuel production from biomass varies from 20 to 58%, depending on the nature of the biomass and the process used to produce liquid or gaseous fuel. A recent estimate by an Australian committee of the potential contribution of biomass to liquid fuel production in Australia is presented. It is concluded that biomass will not be able to provide a substantial fraction of the world’s energy demand, although it can make a useful contribution.


Author(s):  
E. L. Wolf

Solar cells are based on semiconductor pn junctions. Absorption of sunlight is optimal at bandgap energies near one electron volt, and greatly increases the reverse current density. The efficiency of the cell is described by the “filling factor”, and is limited, for single junction cells, by the Quiesser–Shockley limit, near 30 percent. Tandem cells, series combinations of cells, absorb a larger portion of the solar spectrum with higher efficiency but with greater complexity and cost. Such cells are used with focusing optics that inherently raises the efficiency, but also the complexity and cost. This is a textbook for physics, chemistry and engineering students interested in the future of energy as impacted by depletion of fossil fuels, and in the effects of fossil fuel burning on climate.


2020 ◽  
Vol 301 ◽  
pp. 160-166
Author(s):  
Salmah Mohd Ghazali ◽  
Hasiah Salleh ◽  
Ahmad Nazri Dagang ◽  
Nik Aziz Nik Ali ◽  
Nurhayati Ishak ◽  
...  

Solid state dye-sensitized solar cell (ss-DSSC) was developed to overcome the problem arise from electrolyte leakage in liquid state dye-sensitized solar cell. This work focused on the fabrication of ss-DSSC based on inorganic semiconductor of titania and organic conducting polymer of poly (3-hexylthiophene) (P3HT) and natural dyes from purple seaweed (PS dyes) via electrochemical, spin coating and dip coating method, respectively. The absorption spectrum and functional group of PS dyes were investigated using UV-Visible absorption spectroscopy and Fourier Transform Infrared (FTIR) spectroscopy; respectively. Meanwhile, the effect of immersion time of PS dyes on performance of the device was studied via current density-voltage (J-V) characteristic. PS dye was absorbed in a wide range of solar spectrum in visible and near-IR region by chlorophyll a, phycocyanin and zeaxanthin pigments exists in the PS dyes. The present of carboxylic groups in PS dyes which bound to P3HT and formed P3HT-COOH enable the linkage to TiO2 surface which helps in the transfer of electrons from natural dyes to the conduction band of TiO2 film. The highest efficiency obtained was 1.44% at 10 minutes time of immersion. This concludes that PS dyes was a good photosensitizer and can be applied in ss-DSSC.


2013 ◽  
Vol 685 ◽  
pp. 174-178
Author(s):  
B. Dennai ◽  
Hassane Ben Slimane ◽  
A. Helmaoui

The primary objective of this modeling investigation is to optimize a multijunction cascade device under the AM1.5G spectrum. Based on previous studies, GaInP and GaAs cells between them tunnel junction GaAs, because of their energy band gaps, can be combined together to achieve high-efficiency double-junction devices. In this study, the top cell is made of Ga0.5In0.5P (1.74 eV) while the bottom cell is made of GaAs (1.42 eV). In order to avoid the losses and design constraints observed in two-terminal and four-terminal devices, the tandem cell GaInP /GaAs is designed with tunnel junction. In order to determine the optimal structure of the device, the top and bottom junctions were investigated and optimized with regard to the thicknesses. The optimum configuration of the device shows an efficiency of 36.4% under the AM1.5G spectrum and one sun, which is higher than the efficiency of an optimized single-junction Si cell under the same illumination conditions


2020 ◽  
Author(s):  
Geoffrey S Kinsey

A limitation in the performance rating of solar cells and modules is that they are tested using a single value for the solar spectrum. To map the performance expected under the varying spectra found in operating conditions, solar cell efficiencies have been evaluated using solar spectra generated by the National Solar Radiation Database, applied to confirmed record-efficiency cell parameters. Nine solar cell types (single-junction and multijunction) are evaluated using spectra at more than forty locations, spanning 76° of latitude and 150° of longitude, at hourly intervals over a year. Relative to the standard test efficiency, increases in annual operating efficiency are seen in cadmium telluride and (single-junction) perovskite designs, while efficiency decreases are observed in two-terminal multijunction structures. Though silicon exhibits the least variation, its -3% to +2% range is equivalent to 20° C of temperature variation. This divergence in operating efficiencies indicates that evaluation using a single spectrum is not a sufficient basis for comparison, or prediction of energy yield in operation. Application of additional “operating spectra,” to supplement the standard test spectrum, is proposed.


2018 ◽  
Vol 18 (06) ◽  
pp. 1850042
Author(s):  
Kirti Sahu ◽  
Mahesh Dhonde ◽  
V. V. S. Murty

Cheap and efficient dye sensitized solar cells (DSSCs) can be prepared using natural dyes responding in the visible region of solar spectrum. Localized surface plasmon resonance (LSPR) plays a very important role for the improvement in the efficiency of DSSCs by using Plasmonic nanoparticles (PNPs) for exploiting the visible portion of the solar radiation by transferring the energy from dye to PNP. This energy transfers from dye to semiconductor TiO2 through PNP which increases the overall photo catalytic activity. In the present study, Al-doped TiO2 photoanodes were prepared via sol–gel route and used for DSSC application. Various natural and synthetic dyes are prepared and the optical transmittance and absorbance of the dyes are measured in the wavelength range of 250–850[Formula: see text]nm using UV-Vis spectroscopy and they are used in DSSC. Natural dyes extracted from fruits and synthetic dye based on Ruthenium (Ru) metal complex is used as sensitizers. Power conversion efficiency (PCE) of solar cells utilizing different dyes is compared. Out of the various natural dyes, beetroot and strawberry extracts based dyes show good absorbance in the visible range of electromagnetic spectrum. On the other hand, synthetic dyes based on Ru complex show strong absorbance over a wide range of visible spectrum. The absorbance increases with increase in concentration of Ru in ethanol. The extracts of beetroot, strawberry and mixed fruits show a peak in absorbance spectra at 501nm, 416nm and 332nm, respectively, indicating the absorption over a wide range of visible spectrum. Maximum efficiency of DSSCs utilizing PNPs sensitized with beetroot and strawberry dyes are found to be 1.5% and 1.3%, respectively.


Author(s):  
Muhammad Johirul Islam ◽  
Sanjina Mostafa ◽  
Md. Iqbal Bahar Chowdhury

The efficiency increase by inserting quantum wells in a p-i-n solar cell has already been studied practically and theoretically over the years. Here we present a Multi-Quantum-well Single-Junction GaAs/GaSb solar cell which is simulated using Silvaco TCAD, where thicknesses of different layers have been varied to obtain the optimum thickness for maximum efficiency. Comparison is also presented for the same between the solar cells with and without the inclusion of quantum wells.


Author(s):  
A. M. Oleynikov ◽  
L. N. Kanov

The paper gives the description of the original wind electrical installation with mechanical reduction in which the output of vertical axis wind turbine with rather low rotation speed over multiplicator is distributed to a certain number of generators. The number of acting generators is determined by the output of actual operating wind stream at each moment. According to this constructive scheme, it is possible to provide effective and with maximum efficiency installation work in a wide range of wind speeds and under any schedule issued to the consumer of electricity. As there are no any experience in using such complexes, mathematical description of its main elements is given, namely windwheels, generators with electromagnetic excitation of magnetic electrical type, then their interaction with windwheel, and also the results of mathematical modeling of work system regimes under using the offered system of equations. The basis for the mathematical description of the main elements of the installation – synchronous generators – are the system of equations of electrical and mechanical equilibrium in relative units in rotating coordinates without considering saturation of the magnetic circuit. The equation of mechanical equilibrium systems includes torque and brake windwheel electromagnetic moments of generators with taking into account the reduction coefficients and friction. In addition, we specify the alternator rotor dynamics resulting from continuous torque of windwheel fluctuations under the influence of unsteady wind flow and wind speed serving as the original variable is modeled by a set of sinusoids. Model simplification is achieved by equivalization of similar generators and by disregarding these transitions with a small time constant. Calculation the installation with synchronous generators of two types of small and medium capacity taking into account the operational factors allowed us to demonstrate the logic of interactions in the main elements of the reported complex in the process of converting wind flow into the generated active and reactive power. We have shown the possibility of stable system work under changeable wind stream condition by regulating of the plant blade angle and with simultaneous varying of generator number of different types. All these are in great interest for project organizations and power producers.


Sign in / Sign up

Export Citation Format

Share Document