Nickel nano-dot arrays on silicon substrate fabrication and surface charge distribution

MRS Advances ◽  
2020 ◽  
Vol 5 (37-38) ◽  
pp. 1983-1991
Author(s):  
Anupam K.C. ◽  
Garrett Merrion

ABSTRACTWe report a simple and feasible technique for the formation of well-distributed nickel nanodot arrays on both oxidized and unoxidized silicon substrate by a conventional annealing process. The shape and distribution of nickel nanodots were maintained by adjusting annealing temperature, time and the SiO2 buffer layer thickness in between nickel film and the silicon substrate. The diffusion of nickel into the silicon is significantly reduced when the nickel film on the oxidized silicon substrate is annealed at high temperature. From this conventional annealing technique, we achieve a maximum nickel nanodots density up to (7.94±1.92) nanodot counts/µm2 on the oxidized silicon substrate with a well-defined spherical shape by adjusting the thickness of nickel film as well as buffer SiO2 layer. In the next experiment, the surface charge distribution on the nickel nanodot arrays were characterized through the Kelvin probe force microscope (KPFM) on tapping mode. It is found that the nickel nanodots can store and release the electric charges under an applied bias voltage.

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1519
Author(s):  
Leixin Ouyang ◽  
Rubia Shaik ◽  
Ruiting Xu ◽  
Ge Zhang ◽  
Jiang Zhe

Many bio-functions of cells can be regulated by their surface charge characteristics. Mapping surface charge density in a single cell’s surface is vital to advance the understanding of cell behaviors. This article demonstrates a method of cell surface charge mapping via electrostatic cell–nanoparticle (NP) interactions. Fluorescent nanoparticles (NPs) were used as the marker to investigate single cells’ surface charge distribution. The nanoparticles with opposite charges were electrostatically bonded to the cell surface; a stack of fluorescence distribution on a cell’s surface at a series of vertical distances was imaged and analyzed. By establishing a relationship between fluorescent light intensity and number of nanoparticles, cells’ surface charge distribution was quantified from the fluorescence distribution. Two types of cells, human umbilical vein endothelial cells (HUVECs) and HeLa cells, were tested. From the measured surface charge density of a group of single cells, the average zeta potentials of the two types of cells were obtained, which are in good agreement with the standard electrophoretic light scattering measurement. This method can be used for rapid surface charge mapping of single particles or cells, and can advance cell-surface-charge characterization applications in many biomedical fields.


2010 ◽  
Vol 12 (12) ◽  
pp. 1718-1721 ◽  
Author(s):  
Sergey Sigalov ◽  
Mikhael D. Levi ◽  
Gregory Salitra ◽  
Doron Aurbach ◽  
Joachim Maier

Nanoscale ◽  
2021 ◽  
Author(s):  
Feng Chen ◽  
Jin He ◽  
Prakash Manandhar ◽  
Yizi Yang ◽  
Peidang Liu ◽  
...  

The distribution of surface charge and potential of cell membrane plays an indispensable role in cellular activities. However, probing surface charge of live cells in physiological conditions, until recently, remains...


1996 ◽  
Vol 74 (1) ◽  
pp. 101-107 ◽  
Author(s):  
Edward K. Koepf ◽  
Leslie D. Burtnick

Gelsolin purified from horse plasma carries a surface charge distribution that greatly influences how the protein unfolds, aggregates, or precipitates as a function of temperature or concentration of chemical denaturant. Modification of gelsolin with fluorescein isothiocyanate replaces positive charges on amine groups with bulky, negatively charged fluorescein moieties. This postpones thermally induced precipitation by about 10 °C [Koepf, E.K., and Burtnick, L.D. 1993. Eur. J. Biochem. 212: 713–718]. Interaction with cations such as Ca2+ or guanidinium+ also alters the surface charge on gelsolin. This affects the structure of the protein in solution, modifies the pathway for unfolding, and moderates the onset of precipitation induced by chemical denaturants or heat. Denaturation of gelsolin is not interpretable in terms of a simple two-state cooperative mechanism. The pathway to a denatured state and intermediate structures present along the way depend upon the agent used to unfold the protein.Key words: gelsolin; denaturation, chemical, thermal, circular dichroism.


Sign in / Sign up

Export Citation Format

Share Document