The Evolution of Iron Oxide Nanoparticles as MRI Contrast Agents

MRS Advances ◽  
2020 ◽  
Vol 5 (42) ◽  
pp. 2157-2168
Author(s):  
Aileen O'Shea ◽  
Anushri Parakh ◽  
Rita Maria Lahoud ◽  
Sandeep Hedgire ◽  
Mukesh G Harisinghani

AbstractWhile the use of iron oxide nanoparticles as magnetic resonance contrast agents for clinical imaging is established, they are more recently experiencing renewed interest as alternatives to gadolinium-based contrast agents. Ultra-small iron oxide nanoparticles have unique pharmacokinetics, metabolic and imaging properties. These properties have led to improved techniques for imaging a variety of vascular, oncologic and inflammatory conditions with iron oxide nanoparticles. Current research efforts are aimed at harnessing the characteristics of these nanoparticles to advance magnetic resonance imaging techniques and explore new therapeutic potentials. While there are some limitations to the use of iron oxide nanoparticles, including allergies to parenteral iron and iron storage disorders, the practicable applications for these agents will continue to expand. The purpose of this review is to provide a brief overview of the history and synthesis of iron oxide nanoparticles, their current applications in clinical imaging and their prospective clinical applications.

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1950
Author(s):  
Rossella Canese ◽  
Federica Vurro ◽  
Pasquina Marzola

Starting from the mid-1990s, several iron oxide nanoparticles (NPs) were developed as MRI contrast agents. Since their sizes fall in the tenths of a nanometer range, after i.v. injection these NPs are preferentially captured by the reticuloendothelial system of the liver. They have therefore been proposed as liver-specific contrast agents. Even though their unfavorable cost/benefit ratio has led to their withdrawal from the market, innovative applications have recently prompted a renewal of interest in these NPs. One important and innovative application is as diagnostic agents in cancer immunotherapy, thanks to their ability to track tumor-associated macrophages (TAMs) in vivo. It is worth noting that iron oxide NPs may also have a therapeutic role, given their ability to alter macrophage polarization. This review is devoted to the most recent advances in applications of iron oxide NPs in tumor diagnosis and therapy. The intrinsic therapeutic effect of these NPs on tumor growth, their capability to alter macrophage polarization and their diagnostic potential are examined. Innovative strategies for NP-based drug delivery in tumors (e.g., magnetic resonance targeting) will also be described. Finally, the review looks at their role as tracers for innovative, and very promising, imaging techniques (magnetic particle imaging-MPI).


2017 ◽  
Vol 114 (9) ◽  
pp. 2325-2330 ◽  
Author(s):  
He Wei ◽  
Oliver T. Bruns ◽  
Michael G. Kaul ◽  
Eric C. Hansen ◽  
Mariya Barch ◽  
...  

Medical imaging is routine in the diagnosis and staging of a wide range of medical conditions. In particular, magnetic resonance imaging (MRI) is critical for visualizing soft tissue and organs, with over 60 million MRI procedures performed each year worldwide. About one-third of these procedures are contrast-enhanced MRI, and gadolinium-based contrast agents (GBCAs) are the mainstream MRI contrast agents used in the clinic. GBCAs have shown efficacy and are safe to use with most patients; however, some GBCAs have a small risk of adverse effects, including nephrogenic systemic fibrosis (NSF), the untreatable condition recently linked to gadolinium (Gd) exposure during MRI with contrast. In addition, Gd deposition in the human brain has been reported following contrast, and this is now under investigation by the US Food and Drug Administration (FDA). To address a perceived need for a Gd-free contrast agent with pharmacokinetic and imaging properties comparable to GBCAs, we have designed and developed zwitterion-coated exceedingly small superparamagnetic iron oxide nanoparticles (ZES-SPIONs) consisting of ∼3-nm inorganic cores and ∼1-nm ultrathin hydrophilic shell. These ZES-SPIONs are free of Gd and show a high T1 contrast power. We demonstrate the potential of ZES-SPIONs in preclinical MRI and magnetic resonance angiography.


Inorganics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 28 ◽  
Author(s):  
Irene Fernández-Barahona ◽  
María Muñoz-Hernando ◽  
Jesus Ruiz-Cabello ◽  
Fernando Herranz ◽  
Juan Pellico

Iron oxide nanoparticles have been extensively utilised as negative (T2) contrast agents in magnetic resonance imaging. In the past few years, researchers have also exploited their application as positive (T1) contrast agents to overcome the limitation of traditional Gd3+ contrast agents. To provide T1 contrast, these particles must present certain physicochemical properties with control over the size, morphology and surface of the particles. In this review, we summarise the reported T1 iron oxide nanoparticles and critically revise their properties, synthetic protocols and application, not only in MRI but also in multimodal imaging. In addition, we briefly summarise the most important nanoparticulate Gd and Mn agents to evaluate whether T1 iron oxide nanoparticles can reach Gd/Mn contrast capabilities.


1999 ◽  
Vol 212 (2) ◽  
pp. 474-482 ◽  
Author(s):  
Lucia Babes ◽  
Benoı̂t Denizot ◽  
Gisèle Tanguy ◽  
Jean Jacques Le Jeune ◽  
Pierre Jallet

Sign in / Sign up

Export Citation Format

Share Document