Discussion on microstructure of chemical-vapor-deposited TiN films based on the calculated gaseous concentration distribution in the reactor

1995 ◽  
Vol 10 (11) ◽  
pp. 2801-2807 ◽  
Author(s):  
Noboru Yoshikawa ◽  
Atsushi Kikuchi

TiN films were ehemical-vapor-deposited on the inner wall of a tubular reactor. Films deposited in the upstream region of the reactor consisted of small and sharp crystals with (111)-preferred orientation or random orientation. On the other hand, films deposited in the downstream region or at lower partial pressure of TiCl4 consisted of columnar crystals with (110)-preferred orientation, having polyhedral shapes on the surface. For the films deposited under different conditions at different axial positions, relationships were investigated among the temperature, the calculated concentrations on the substrate, and the degree of preferred orientation of the films. As a result, it was shown that formation of films with (110)-preferred orientation is related to the conditions of high temperature and low partial pressure of TiCl4. Films deposited at the higher gas flow rate had lower degrees of (110)-preferred orientation. Decrease in partial pressure of TiCl4 along the axial direction in the reactor was calculated to be smaller at higher gas flow rate, and provided suitable conditions for deposition of films having small and sharp crystals.

1992 ◽  
Vol 282 ◽  
Author(s):  
Yu-Neng Chang

ABSTRACTBy using the strong reductive potential of copper acetylacetone (Cu(acac)2) when Cu(acac)2) was thermally decomposed, copper metal films were prepared by metal organic chemical vapor deposition (MOCVD) process using sublimed Cu(acac)2 vapor and water vapor as reactants, at one atmosphere pressure. According to thermodynamic calculations, Cu films could be prepared by MOCVD process with a high ratio of partial pressures for water vapor and Cu(acac)2 vapor (PH2O/Pcu(acac)2>30) In this paper, the impacts of MOCVD processing parameters such as watervapor partial pressure, total carrier gas flow rate, and precursor partial pressure on film composition and microstructure were investigated. Deposition temperature is the primary processing parameter affecting film stoichiometry. In a specific deposition temperature window, from 370°C to 400°C, polycrystalline Cu films with Cu [111] preferential orientation were deposited. ER and XRD results indicated that films deposited at temperature lower than 350°C contain copper oxide phase with poor crystal structure. By comparing the values of X-ray Auger Electron Spectroscopy (XAES) and Auger parameter (αAu) from photoelectrons of Cu films and standards from reference compounds, die principle oxidation state of copper in these films was determined as Cu(0). The deposition results indicated that a water vapor partial pressure above 10 torr is necessary to produce Cu films. As indicated by SEM, Increasing the carrier gas flow rate, above 600 sccm, can reduce the average temperature profile in the thermal boundary layer above the substrate surface, retard the gas phase reaction rate, presumably eliminate the homogeneous nucleation, and deposit smooth Cu films.


MRS Advances ◽  
2016 ◽  
Vol 2 (29) ◽  
pp. 1533-1538 ◽  
Author(s):  
S. Ishihara ◽  
Y. Hibino ◽  
N. Sawamoto ◽  
T. Ohashi ◽  
K. Matsuura ◽  
...  

ABSTRACTMolybdenum disulfide (MoS2) thin films were fabricated by two-step chemical vapor deposition (CVD) using (t-C4H9)2S2 and the effects of temperature, gas flow rate, and atmosphere on the formation were investigated in order to achieve high-speed low-temperature MoS2 film formation. From the results of X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) investigations, it was confirmed that c-axis orientation of the pre-deposited Mo film has a significant involvement in the crystal orientation after the reaction low temperature sulfurization annealing and we successfully obtained 3 nm c-axis oriented MoS2 thin film. From the S/Mo ratios in the films, it was revealed that the sulfurization reaction proceeds faster with increase in the sulfurization temperature and the gas flow rate. Moreover, the sulfurization under the H2 atmosphere promotes decomposition reaction of (t-C4H9)2S2, which were confirmed by XPS and density functional theory (DFT) simulation.


2006 ◽  
Vol 45 (3) ◽  
pp. 934-939 ◽  
Author(s):  
Haibo Zhao ◽  
Russell G. Tonkyn ◽  
Stephan E. Barlow ◽  
Charles H. F. Peden ◽  
Bruce E. Koel

Author(s):  
I. Yuri ◽  
T. Hisamatsu ◽  
Y. Etori ◽  
T. Yamamoto

Effects of various basic factors of combustion gas flow conditions on degradation behaviors of silicon carbide have been experimentally determined. The exposure tests were performed for widely varied experimental parameters of the gas temperatures (T = 900–1500°C), pressure (P = 0.3–0.8MPa), gas flow rate (V = 50–250m/s), water vapor partial pressure (PH2O = 32–82kPa) and oxygen partial pressure (PO2 = 24–44kPa). Degradation behaviors of silicon carbide were expressed as the weight loss of the substrate. The weight loss rate depends on the water vapor partial pressure remarkably. The effect of the oxygen partial pressure on the weight loss was smaller than that of the water vapor partial pressure, and the weight loss decreased with the increase of the oxygen partial pressure. Considering the effects of partial pressures of oxygen and water vapor, the gas temperature and the pressure didn’t have much effect on the weight loss. The weight loss depends on the gas flow rate, the increase rate of the weight loss for the gas flow rate becomes small with the gas flow rate. Consequently, the water vapor partial pressure, the oxygen partial pressure, the gas temperature, the pressure and the gas flow rate dependence of the weight loss rate is expressed as PH2O1.9 V0.6 P0.3 / PO20.6.


2015 ◽  
Vol 1109 ◽  
pp. 456-460
Author(s):  
Najwa Ezira Ahmed Azhar ◽  
Shafinaz Sobihana Shariffudin ◽  
Aimi Bazilah Rosli ◽  
A.K.S. Shafura ◽  
Mohamad Rusop

ZnO nanotetrapod with different oxygen flow rate was prepared by thermal chemical vapor deposition. We have successfully deposited ZnO nanotetrapod on synthesis Zn powder using double furnace with argon (Ar) and oxygen (O2) gas as source material. In this study, we report the effect of different gas flow rate (5 sccm to 15 sccm) on structural and optical properties of the ZnO nanotetrapod. The morphology of ZnO nanotetrapods were analyzed by field emission scanning electron microscope (FE-SEM). It exhibits the length of the nanotetrapods arm decrease with increased of flow rate and diameter of nanotetrapod in range 30 nm to 90 nm. The optical properties were determined through XRD and photoluminescence with 2θ (30o to 80o) and wavelength 350 nm to 620 nm respectively. PL spectra show that the UV emission centred at 380 nm while yellow-orange emission centred at 540 nm.


2012 ◽  
Vol 576 ◽  
pp. 594-597 ◽  
Author(s):  
Mohammad Asaduzzaman Chowdhury ◽  
Dewan Muhammad Nuruzzaman

A hot filament thermal chemical vapor deposition (CVD) reactor was used to deposit solid thin films on stainless steel 316 (SS 316) substrates at different flow rates of natural gas. The variation of thin film deposition rate with the variation of gas flow rate has been investigated experimentally. During experiment, the effect of gap between activation heater and substrate on the deposition rate has also been observed. Results show that deposition rate on SS 316 increases with the increase in gas flow rate. It is also observed that deposition rate increases with the decrease in gap between activation heater and substrate within the observed range. In addition, friction coefficient and wear rate of SS 316 sliding against SS 304 under different normal loads are also investigated before and after deposition. The experimental results reveal that improved friction coefficient and wear rate are obtained after deposition as compared to that of before deposition.


2007 ◽  
Vol 1057 ◽  
Author(s):  
Yoshiyuki Suda ◽  
Junichi Takayama ◽  
Takeshi Saito ◽  
Atsushi Okita ◽  
Junji Nakamura ◽  
...  

ABSTRACTWe report the effect of CO2 addition to CO4 gas on carbon nanotube (CNT) growth by chemical vapor deposition. CO2 gas was introduced during the growth of CNTs on Fe0.05Mo0.025MgO0.925 and Ni0.05Mo0.025MgO0.925 catalysts by CO4 gas at a temperature of 800–850°C, and its concentration in a fraction of the gas flow rate was varied from 5×10−3 to 50%. In the experimental condition of the preferential growth of multi-walled CNTs, the carbon yield and the G/D ratio in the Raman spectra of the CNTs grown in 10%-CO2/CO4 were slightly higher than that grown in CO4 only. However, CNTs hardly grew when the CO2 concentration was more than 10%. We then prepared CO2 gas diluted with Ar gas (CO2/Ar) and varied its flow rate between 0 and 10 sccm. As the CO2/Ar gas flow rate was increased, the number of RBM peaks decreased even though the G/D ratio gradually decreased. The decrease in the RBM intensities of CNTs on the FeMoMgO catalyst was more significant than that of NiMoMgO.


2021 ◽  
Vol 21 (8) ◽  
pp. 4470-4476
Author(s):  
Yoonsoo Park ◽  
Hyuna Lim ◽  
Namwuk Baek ◽  
Seung Hun Park ◽  
Sungwoo Lee ◽  
...  

In semiconductor industry, low-dielectric-constant SiCOH films are widely used as inter-metal dielectric (IMD) material to reduce a resistance-capacitance delay, which could degrade performances of semiconductor chips. Plasma enhanced chemical vapor deposition (PECVD) system has been employed to fabricate the low-dielectric-constant SiCOH films. In this work, among various parameters (plasma power, deposition pressure, substrate temperature, precursor injection flow rate, etc.), helium carrier gas flow rate was used to modulate the properties of the low-dielectric-constant SiCOH films. Octamethylcyclotetrasiloxane (OMCTS) precursor and helium were injected into the process chamber of PECVD. And then SiCOH films were deposited varying helium carrier gas flow rate. As helium carrier gas flow rate increased from 1500 to 5000 sccm, refractive indices were increased from 1.389 to 1.428 with enhancement of mechanical strength, i.e., increased hardness and elastic modulus from 1.7 and 9.1 GPa to 3.3 and 19.8 GPa, respectively. However, the relative dielectric constant (k) value was slightly increased from 2.72 to 2.97. Through analysis of Fourier transform infrared (FTIR) spectroscopy, the effects of the helium carrier gas flow rate on chemical structure, were investigated. It was thought that the increase in helium carrier gas flow rate could affect the density with changes of chemical structure and composition. In conclusion, regulation of helium carrier gas flow rate can effectively modulate k values and mechanical strength, which is needed for IMD material in semiconductor fabrication possess.


Sign in / Sign up

Export Citation Format

Share Document