Effect of Ag-particulate addition on processing, microstructure, and properties of MgO-whisker-reinforced bulk BPSCCO high-Tc superconductor composites

1996 ◽  
Vol 11 (6) ◽  
pp. 1373-1382 ◽  
Author(s):  
Y. S. Yuan ◽  
M. S. Wong ◽  
S. S. Wang

In associated papers [Y. S. Yuan, M. S. Wong, and S. S. Wang, J. Mater. Res. 11, 8–17 (1996); J. Mater. Res. (1996, in press)] it has been shown that weak thermo-mechanical properties of a bulk monolithic high-Tc superconductor (HTS) can be improved by introducing strong ceramic whiskers into the HTS ceramic materials. In this paper, we report a further study of incorporating Ag particulates, (Ag)p, in a bulk monolithic BPSCCO and in the MgO-whisker reinforced BPSCCO composite. Effects of the (Ag)p addition on processing, microstructure, and superconducting and mechanical properties of the bulk monolithic BPSCCO and the (MgO)w/BPSCCO composite are investigated. The results indicate that the highly ductile Ag particulates promote densification of the BPSCCO matrix phase in the composite during hot pressing. The microstructure of the HTS composite with the (Ag)p addition is similar to that in the HTS material without the (Ag)p. The (MgO)w/BPSCCO composite with 10% (by weight) Ag particulates has been shown to possess excellent superconducting properties. The (Ag)p addition to both the monolithic BPSCCO and the (MgO)w/BPSCCO is found to increase appreciably their fracture toughnesses, but has little effects on mechanical strengths of the materials. Quantitative relationships have been established among solid-state processing variables, HTS phase developments, microstructures, and superconducting and mechanical properties of the (Ag)p/BPSCCO and the (MgO)w/(Ag)p/BPSCCO HTS composites.

1988 ◽  
Vol 32 ◽  
pp. 429-436
Author(s):  
Lynn E. Lowry ◽  
Daniel D. Lawson ◽  
Wayne M. Phillips

Y.Ba2Cu3O7, a high TC superconductor powder, was shock compacted and explosively welded inside a copper matrix using the explosive fabrication methods described by Murr, Hare and Eror. The shock compression fabrication technique provides the ability to process the superconductor powders into useable structures that will minimize environmental degradation and will not negatively affect the physical or mechanical properties. Additionally, the introduction of shock induced defects are known to increase solid-state reactivity in ceramic materials. For this reason, shock compression fabrication of the superconductor/copper system offers the possibility of enhancing the superconducting properties of the YBa2Cu3O7 powders.


1996 ◽  
Vol 11 (1) ◽  
pp. 8-17 ◽  
Author(s):  
Y. S. Yuan ◽  
M. S. Wong ◽  
S. S. Wang

The inherently weak mechanical properties associated with monolithic high-temperature superconductors (HTS) can be improved by introducing properly selected strong ceramic whiskers into the HTS materials. In this research, processing and superconducting properties of monolithic Pb-doped Bi-2223 (BPSCCO) and MgO whisker-reinforced BPSCCO HTS composite materials have been systematically studied. A solid-state processing method is successfully developed to fabricate the (MgO)w/BPSCCO composite. The HTS composite contains a dense and highly pure BPSCCO matrix phase with a preferred grain orientation, which is reinforced by MgO whiskers randomly oriented in the plane perpendicular to the hot-pressing direction. The HTS composite material is shown to exhibit excellent superconducting properties. For example, a transport Jc measured at 77 K in a zero field has been obtained to exceed 5000 A/cm2 in a (MgO)w/BPSCCO composite with 10% MgO whiskers by volume. Relationships among solid-state processing variables, HTS phase development, and superconducting properties of the monolithic BPSCCO and the HTS composite are established in the paper.


1996 ◽  
Vol 11 (7) ◽  
pp. 1645-1652 ◽  
Author(s):  
Y. S. Yuan ◽  
M. S. Wong ◽  
S. S. Wang

The inherently weak mechanical properties of bulk monolithic high-temperature superconductors (HTS) have been a concern. Properly selected reinforcements in fiber and whisker forms have been introduced to the HTS ceramics to improve their mechanical properties. In this paper, mechanical behavior of a MgO-whisker reinforced Pb-doped Bi-2223 (BPSCCO) HTS composite fabricated by a solid-state processing method is studied. The (MgO)w/BPSCCO HTS composite has been shown to exhibit excellent superconducting properties. Elastic properties, strengths, and notched fracture toughnesses of both the monolithic BPSCCO and the (MgO)w/BPSCCO HTS composite are investigated. Detailed mechanical properties are reported for the first time for the (MgO)w/BPSCCO HTS composite. Mechanisms of strengthening and toughening in the MgO-whisker-reinforced HTS composite are also discussed.


2019 ◽  
Vol 12 ◽  
pp. 718-724 ◽  
Author(s):  
Ye Wang ◽  
Hongyu Xu ◽  
Maoliang Hu ◽  
Sumio Sugiyama ◽  
Zesheng Ji

2020 ◽  
Vol 1012 ◽  
pp. 3-8
Author(s):  
A.C.G. Silva ◽  
Hellen C.P. Oliveira ◽  
Thales Eduardo Leal ◽  
Paulo Santos Assis

The objective of this paper is to study Fe65Nb-Cu metal matrices, thus varying the content of the pre-alloyed Fe65Nb powder from 10% to 100%. Therefore, powders of Fe65Nb and Cu were used, innovating in the chemical composition of the commonly used matrices. The objective is to evaluate the substitution of Co (toxic element, commonly used) by Nb (98.2% of reserves are Brazilian). For the sintering of the samples it was used hot pressing technique. The parameters were set at: 850°C / 35MPa / 3min. The sintered bodies underwent SEM/EDS analysis and density and porosity measurements were performed. From the results it is possible to say that the compositions of (10% and 30% Fe65Nb) presented the best physical and mechanical properties. The relative density decreases for the compositions with 40%, 50% and 60% Fe65Nb is justified by the presence of fragile particles in metal matrices, since they require more energy in order to efficiently transport matter (diffusion) in a solid state.


1989 ◽  
Vol 32-33 ◽  
pp. 1179-1182 ◽  
Author(s):  
G PAZPUJALT ◽  
A MEHROTRA ◽  
S FERRANTI ◽  
J AGOSTINELLI

2013 ◽  
Vol 745-746 ◽  
pp. 560-564
Author(s):  
Wen Bo Han ◽  
Peng Wang ◽  
Yang Hou

ZrB2-based ceramic composites were prepared through hot-pressing at a temperature of 1880°C. An intragranular microstructure was achieved because of the existence of nanoSiC. In this paper, the mechanical properties of ceramic materials of ZrB2-SiC-G were studied, and the influence of intragranular microstructure on the mechanical properties was analyzed. The values of flexural strength and fracture toughness of ZrB2-20vol%SiCnp-15vol%G reached 551.9MPa and 5.25MPa·m1/2, respectively. Compared to ZrB2-20vol%SiC-15vol%G with micro-SiC, the fracture toughness was improved.


Sign in / Sign up

Export Citation Format

Share Document