X-Ray Diffraction Studies on Shock Modified Y Ba2 Cu3 O7 Superconductors

1988 ◽  
Vol 32 ◽  
pp. 429-436
Author(s):  
Lynn E. Lowry ◽  
Daniel D. Lawson ◽  
Wayne M. Phillips

Y.Ba2Cu3O7, a high TC superconductor powder, was shock compacted and explosively welded inside a copper matrix using the explosive fabrication methods described by Murr, Hare and Eror. The shock compression fabrication technique provides the ability to process the superconductor powders into useable structures that will minimize environmental degradation and will not negatively affect the physical or mechanical properties. Additionally, the introduction of shock induced defects are known to increase solid-state reactivity in ceramic materials. For this reason, shock compression fabrication of the superconductor/copper system offers the possibility of enhancing the superconducting properties of the YBa2Cu3O7 powders.

2011 ◽  
Vol 412 ◽  
pp. 61-64
Author(s):  
Xiao Bo Wu ◽  
Da Zhi Sun ◽  
Dan Yu Jiang ◽  
Hai Fang Xu ◽  
De Xin Huang ◽  
...  

3Y-TZP powder has been successfully synthesized by gel solid-state method. The structural phases of powder particles were analyzed by X-ray diffraction and the morphology was analyzed by scanning electron microscopy. The average size of grains was 230 nm. The sintering behavior, mechanical properties and microstructure of 3Y-TZP ceramics sintered by this powder were investigated. The experiment results showed that the mechanical properties of ceramics were excellent.


1996 ◽  
Vol 11 (6) ◽  
pp. 1373-1382 ◽  
Author(s):  
Y. S. Yuan ◽  
M. S. Wong ◽  
S. S. Wang

In associated papers [Y. S. Yuan, M. S. Wong, and S. S. Wang, J. Mater. Res. 11, 8–17 (1996); J. Mater. Res. (1996, in press)] it has been shown that weak thermo-mechanical properties of a bulk monolithic high-Tc superconductor (HTS) can be improved by introducing strong ceramic whiskers into the HTS ceramic materials. In this paper, we report a further study of incorporating Ag particulates, (Ag)p, in a bulk monolithic BPSCCO and in the MgO-whisker reinforced BPSCCO composite. Effects of the (Ag)p addition on processing, microstructure, and superconducting and mechanical properties of the bulk monolithic BPSCCO and the (MgO)w/BPSCCO composite are investigated. The results indicate that the highly ductile Ag particulates promote densification of the BPSCCO matrix phase in the composite during hot pressing. The microstructure of the HTS composite with the (Ag)p addition is similar to that in the HTS material without the (Ag)p. The (MgO)w/BPSCCO composite with 10% (by weight) Ag particulates has been shown to possess excellent superconducting properties. The (Ag)p addition to both the monolithic BPSCCO and the (MgO)w/BPSCCO is found to increase appreciably their fracture toughnesses, but has little effects on mechanical strengths of the materials. Quantitative relationships have been established among solid-state processing variables, HTS phase developments, microstructures, and superconducting and mechanical properties of the (Ag)p/BPSCCO and the (MgO)w/(Ag)p/BPSCCO HTS composites.


2015 ◽  
Vol 788 ◽  
pp. 246-251
Author(s):  
Natalya Belousova ◽  
Sergey Veselov ◽  
Nina Cherkasova ◽  
Aleksey Lazarev ◽  
Ruslan Kuzmin ◽  
...  

A possibility of the SrAl12O19platelet formation in the Al2O3– ZrO2ceramic using SrCO3or Sr3Al2O6is evaluated. An impact of two techniques of platelet synthesis on mechanical properties of the material is investigated. Defects revealed in the sintered ceramic material are analyzed. Recommendations on the best method of the SrAl12O19phase formation in ceramic materials are given based on the structural and X-ray diffraction analyses as well as on mechanical tests. It is shown that an addition of 3 wt% SrAl12O19into the ZTA ceramic results in an increase in fracture toughness by up to 30 % in comparison with the initial material.


1989 ◽  
Vol 179 ◽  
Author(s):  
M. R. Silsbee ◽  
R. A. Steinke ◽  
D. M. Roy ◽  
D. K. Agrawal ◽  
R. Roy

AbstractReactive aluminas, including rapidly calcined gibbsites, offer exciting potential for forming ceramic materials at low temperatures. New x-ray amorphous aluminas will react with water at room temperatures to form compacts with 10–50 MPa tensile strengths, via viscous slurries. The cementious behavior of these materials has been examined. The results of TGA, x-ray diffraction, SEM, mechanical properties, and other characterization techniques, as applied to these systems, will be discussed.


2008 ◽  
Vol 368-372 ◽  
pp. 1426-1428
Author(s):  
Hong Xia Lu ◽  
Tie Cui Hou ◽  
Zhang Wei ◽  
Li Jian Li ◽  
Rui Zhang ◽  
...  

The characteristic of Angang blast furnace slag was studied by X-ray fluorescence spectrometry, DSC, X-ray diffraction and SEM. SiO2-Al2O3-CaO system glass-ceramics have been obtained successfully from slag with other additives. The properties of slag-based glass-ceramics were analyzed in this paper. It has been found that nucleation temperature is in the range of 600~700 °C, and crystallization temperature is in the range of 850~950 °C. The crystals phase is 2 CaO⋅ Al2O3⋅ SiO2. The chemical and mechanical properties of slag-based glass-ceramics are superior to the properties of clay brick.


1990 ◽  
Vol 180 ◽  
Author(s):  
H.S. Koo ◽  
C.K. Chiang ◽  
Y.T. Huang ◽  
G.C. Tu

ABSTRACTHigh-Tc superconducting Bi-Pb-Sr-Ca-Cu oxide with zero resistance temperature at above lOOK has been synthesized via the use of ethylenediamine-tetra-acetate(EDTA) colloid and corresponding metal nitrates. Remarkable sinterability of the precursor requires shorter time to achieve superconducting phases than conventional solid-state reactions. Superconducting properties were measured electrically and magnetically. The thermal decomposition, X-ray diffraction and microstructural characteristics of the precursor and the sintered samples were also discussed.


Author(s):  
W. Melik ◽  
Z. Boumerzoug ◽  
F. Delaunois

Aluminium matrix composites are both strong and lightweight, and are limited in their applications due to the proper choice of welding process. Conventional welding that is based on fusion at the welded joint is not suitable because it leads to the formation of certain defects at the welded joint. For this reason, solid-state welding such as diffusion bonding is one of the suitable joining methods, as there will be no melting of any of the constituents. The solid-state diffusion bonding at 520° C of Al6061-SiC nanocomposites was investigated. This composite material was made by powder metallurgy, where aluminium alloy Al6061 was selected as the base metal, and SiC nanoparticles with an average size of 50 nm were added as reinforced particles. The effects of bonding time on the microstructures and mechanical properties of the welded material were investigated. The main characterisation techniques were optical microscopy, scanning electron microscopy coupled with energy dispersive spectroscopy, x-ray diffraction, and microhardness measurements. We have found that increasing the holding time up to 3 h at 520° C strengthens the weldability of the two basic composite materials and increases their hardness. X-ray diffraction analysis did not reveal any new phase during diffusion welding; it is considered one of the advantages of using the solid-state diffusion welding technique for the assembly of this kind of composite material. The welding success of this composite material widens its field of use, such as the automotive or space industry, because it is a light material with high mechanical properties.


Author(s):  
Kenneth M. Richter ◽  
John A. Schilling

The structural unit of solid state collagen complexes has been reported by Porter and Vanamee via EM and by Cowan, North and Randall via x-ray diffraction to be an ellipsoidal unit of 210-270 A. length by 50-100 A. diameter. It subsequently was independently demonstrated by us in dog tendon, dermis, and induced complexes. Its detailed morphologic, dimensional and molecular weight (MW) aspects have now been determined. It is pear-shaped in long profile with m diameters of 57 and 108 A. and m length of 263 A. (Fig. 1, tendon, KMnO4 fixation, Na-tungstate; Fig. 2a, schematic of unit in long, C, and x-sectional profiles of its thin, xB, and bulbous, xA portions; Fig. 2b, tendon essentially unmodified by ether and 0.4 N NaOH treatment, Na-tungstate). The unit consists of a uniquely coild cable, c, of ṁ 22.9 A. diameter and length of 2580-3316 A. The cable consists of three 2nd-strands, s, each of m 10.6 A.


Author(s):  
F. Ma ◽  
S. Vivekanand ◽  
K. Barmak ◽  
C. Michaelsen

Solid state reactions in sputter-deposited Nb/Al multilayer thin films have been studied by transmission and analytical electron microscopy (TEM/AEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The Nb/Al multilayer thin films for TEM studies were sputter-deposited on (1102)sapphire substrates. The periodicity of the films is in the range 10-500 nm. The overall composition of the films are 1/3, 2/1, and 3/1 Nb/Al, corresponding to the stoichiometric composition of the three intermetallic phases in this system.Figure 1 is a TEM micrograph of an as-deposited film with periodicity A = dA1 + dNb = 72 nm, where d's are layer thicknesses. The polycrystalline nature of the Al and Nb layers with their columnar grain structure is evident in the figure. Both Nb and Al layers exhibit crystallographic texture, with the electron diffraction pattern for this film showing stronger diffraction spots in the direction normal to the multilayer. The X-ray diffraction patterns of all films are dominated by the Al(l 11) and Nb(l 10) peaks and show a merging of these two peaks with decreasing periodicity.


2019 ◽  
Vol 107 (2) ◽  
pp. 207 ◽  
Author(s):  
Jaroslav Čech ◽  
Petr Haušild ◽  
Miroslav Karlík ◽  
Veronika Kadlecová ◽  
Jiří Čapek ◽  
...  

FeAl20Si20 (wt.%) powders prepared by mechanical alloying from different initial feedstock materials (Fe, Al, Si, FeAl27) were investigated in this study. Scanning electron microscopy, X-ray diffraction and nanoindentation techniques were used to analyze microstructure, phase composition and mechanical properties (hardness and Young’s modulus). Finite element model was developed to account for the decrease in measured values of mechanical properties of powder particles with increasing penetration depth caused by surrounding soft resin used for embedding powder particles. Progressive homogenization of the powders’ microstructure and an increase of hardness and Young’s modulus with milling time were observed and the time for complete homogenization was estimated.


Sign in / Sign up

Export Citation Format

Share Document