Evaluation of the Influence of Pre-Alloyed Powder Fe65Nb on the Production of Metal Matrices by Powder Metallurgy

2020 ◽  
Vol 1012 ◽  
pp. 3-8
Author(s):  
A.C.G. Silva ◽  
Hellen C.P. Oliveira ◽  
Thales Eduardo Leal ◽  
Paulo Santos Assis

The objective of this paper is to study Fe65Nb-Cu metal matrices, thus varying the content of the pre-alloyed Fe65Nb powder from 10% to 100%. Therefore, powders of Fe65Nb and Cu were used, innovating in the chemical composition of the commonly used matrices. The objective is to evaluate the substitution of Co (toxic element, commonly used) by Nb (98.2% of reserves are Brazilian). For the sintering of the samples it was used hot pressing technique. The parameters were set at: 850°C / 35MPa / 3min. The sintered bodies underwent SEM/EDS analysis and density and porosity measurements were performed. From the results it is possible to say that the compositions of (10% and 30% Fe65Nb) presented the best physical and mechanical properties. The relative density decreases for the compositions with 40%, 50% and 60% Fe65Nb is justified by the presence of fragile particles in metal matrices, since they require more energy in order to efficiently transport matter (diffusion) in a solid state.

2017 ◽  
Vol 17 (1) ◽  
pp. 37-46
Author(s):  
E. Lichańska ◽  
P. Kulecki ◽  
K. Pańcikiewicz

Abstract The aim of the study was to evaluate the effect of chemical composition on the structure and mechanical properties of Mn-Ni-Mo and Ni-Mo-Cu PM steels. Pre-alloyed powder Astaloy 85Mo, diffusion alloyed powders Distaloy AQ and Distaloy AB produced by Höganäs, low carbon ferromanganese, carbonyl nickel powder T255 with three-dimensional filamentary structure and graphite CU-F have been used as the basic powders. Three mixtures with compositions of Fe-1%Mn-(0.5/1.75)%Ni-(0.5/0.85)%Mo-0.8%C and Fe-1.75%Ni-0.5%Mo-1.5%Cu-0.8%C were prepared in a Turbula mixer. Green compacts were single pressed in a steel die at 660 MPa according to PN-EN ISO 2740 standard. Sinterhardening was carried out at 1250°C in a mixture of 95% N2+5% H2 for 60 minutes. Mechanical tests (tensile, bend, hardness) and microstructural investigations were performed. Additionally, XRD and EDS analysis, fractographic investigations were carried out. The microstructures of steels investigated were mainly bainitic or bainitic-martensitic. Addition 1% Mn to Distaloy AQ based steel caused increase of tensile properties (YS from 422 to 489 MPa, UTS from 522 to 638 MPa, TRS from 901 to 1096 MPa) and decrease of plasticity (elongation from 3.65 to 2.84%).


2021 ◽  
pp. 100184
Author(s):  
Gyanendra Bhatta ◽  
Luis De Los Santos Valladares ◽  
Xinggang Liu ◽  
Zhaojun Ma ◽  
A. Bustamante Domínguez ◽  
...  

2012 ◽  
Vol 506 ◽  
pp. 57-60 ◽  
Author(s):  
M. Ebrahimi ◽  
Naruporn Monmaturapoj ◽  
S. Suttapreyasri ◽  
P. Pripatnanont

The biphasic calcium phosphate (BCP) concept was introduced to overcome disadvantages of single phase biomaterials. In this study, we prepared BCP from nanoHA and β-TCP that were synthesized via a solid state reaction. Three different ratios of pure BCP and collagen-based BCP scaffolds (%HA/%β-TCP; 30/70, 40/60 and 50/50) were produced using a polymeric sponge method. Physical and mechanical properties of all materials and scaffolds were investigated. XRD pattern proved the purity of each HA, β-TCP and BCP. SEM showed overall distribution of macropores (80-200 µm) with appropriate interconnected porosities. Total porosity of pure BCP (93% ± 2) was found to be higher than collagen-based BCP (85%± 3). It was observed that dimensional shrinkage of larger scaffold (39% ± 4) is lower than smaller one (42% ± 5) and scaffolds with higher HA (50%) ratio experienced greater shrinkage than those with higher β-TCP (70%) ratio (45% ±3 and 36% ±1 respectively). Mechanical properties of both groups tend to be very low and collagen coating had no influence on mechanical behavior. Further studies may improve the physical properties of these composite BCP.


Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1166 ◽  
Author(s):  
Pavlo Bekhta ◽  
Ján Sedliačik

Thermoplastic films exhibit good potential to be used as adhesives for the production of veneer-based composites. This work presents the first effort to develop and evaluate composites based on alder veneers and high-density polyethylene (HDPE) film. The effects of hot-pressing temperature (140, 160, and 180 °C), hot-pressing pressure (0.8, 1.2, and 1.6 MPa), hot-pressing time (1, 2, 3, and 5 min), and type of adhesives on the physical and mechanical properties of alder plywood panels were investigated. The effects of these variables on the core-layer temperature during the hot pressing of multiplywood panels using various adhesives were also studied. Three types of adhesives were used: urea–formaldehyde (UF), phenol–formaldehyde (PF), and HDPE film. UF and PF adhesives were used for the comparison. The findings of this work indicate that formaldehyde-free HDPE film adhesive gave values of mechanical properties of alder plywood panels that are comparable to those obtained with traditional UF and PF adhesives, even though the adhesive dosage and pressing pressure were lower than when UF and PF adhesives were used. The obtained bonding strength values of HDPE-bonded alder plywood panels ranged from 0.74 to 2.38 MPa and met the European Standard EN 314-2 for Class 1 plywood. The optimum conditions for the bonding of HDPE plywood were 160 °C, 0.8 MPa, and 3 min.


2018 ◽  
Vol 880 ◽  
pp. 241-247
Author(s):  
Claudiu Nicolicescu ◽  
Victor Horia Nicoară ◽  
Costel Silviu Bălulescu

Alloys based on Cu/Cr and Cu/Cr/W attract the attention due to their presence in different applications that require higher electrical properties which are combined with good mechanical properties. In order to synthesis the material based on Cu/Cr and Cu/Cr/W, mechanical alloying technique was used. Four mixtures, X1 (99%CuCr), X2 (97%CuCr), X3 (94%Cu1%CrW), X4 (92%Cu3%CrW – weight percent), were prepared using a vario planetary ball mill Pulverisette 4 made by Fritsch. The mixtures obtained after 10 hours were analyzed by scanning electron microscopy (SEM). It was found that the presence of chromium and tungsten influence the morphology and the particles tend to be flat. Sinter ability and microhardness are influenced by the chemical composition of the samples.


2012 ◽  
Vol 503-504 ◽  
pp. 74-77
Author(s):  
Nan Hu ◽  
Xian Jun Li ◽  
Yi Qiang Wu ◽  
Xin Gong Li ◽  
Zhi Cheng Xue

In this paper, the new bamboo-based consolidated composite floors were fabricated with thin bamboo veneers which used as decoration layers, wear resistant layers, high density fiberboards and equilibrium layers through assembling and scuffing. The effect rules of the composite floor on properties were preliminarily studied by three factors: hot-pressing temperature, pressure and time. The results showed that the wear resistance and surface bond strength of the thin bamboo veneer consolidated composite floor significantly increased with the rise of hot-pressing temperature. In the scope of resources, the effect of hot-pressing pressure and time on properties of the floor is not significant. The optimizing technology is hot-pressing temperature 170°C, pressure 3MPa and time 40s/mm in this study. The thin bamboo veneer consolidated composite floor is an excellent floor decorative material, which has good physical and mechanical properties.


2010 ◽  
Vol 2 (6) ◽  
pp. 50-55
Author(s):  
Marija Vaičienė ◽  
Jurgita Malaiškienė

Binder material is the most expensive raw component of concrete; thus, scientists are looking for cheaper substitute materials. This paper shows that when manufacturing, a part of the binder material of expanded-clay lightweight concrete can be replaced with active filler. The conducted studies show that technogenic – catalyst waste could act as similar filler. The study also includes the dependence of the physical and mechanical properties of expanded-clay lightweight concrete on the concrete mixture and the chemical composition of the samples obtained. Different formation and composition mixtures of expanded-clay lightweight concrete were chosen to determine the properties of physical-mechanical properties such as density, water absorption and compressive strength.


Author(s):  
M. A. Salem ◽  
I. G. El-Batanony ◽  
M. Ghanem ◽  
Mohamed Ibrahim Abd ElAal

Different Al-SiC metal matrix composites (MMCs) with a different matrix, reinforcement sizes, and volume fractions were fabricated using ball milling (BM) and powder metallurgy (PM) techniques. Al and Al-SiC composites with different volume fractions were milled for 120 h. Then, the Al and Al-SiC composites were pressed under 125 MPa and finally sintered at 450 °C. Moreover, microsize and combination between micro and nano sizes Al-SiC samples were prepared by the same way. The effect of the Al matrix, SiC reinforcement sizes and the SiC volume fraction on the microstructure evolution, physical and mechanical properties of the produced composites was investigated. The BM and powder metallurgy techniques followed by sintering produce fully dense Al-SiC composite samples with different matrix and reinforcement sizes. The SiC particle size was observed to have a higher effect on the thermal conductivity, electrical resistivity, and microhardness of the produced composites than that of the SiC volume fraction. The decreasing of the Al and SiC particle sizes and increasing of the SiC volume fraction deteriorate the physical properties. On the other hand, the microhardness was enhanced with the decreasing of the Al, SiC particle sizes and the increasing of the SiC volume fraction.


2018 ◽  
Vol 770 ◽  
pp. 248-254
Author(s):  
Leandro Bolzoni ◽  
Elisa Maria Ruiz-Navas ◽  
Elena Gordo

Cheap alloying elements and creative processing techniques are a way forward to open up more industrial opportunities for Ti in sectors where it is not extensively applied yet, rather than in aerospace and biomedical applications. This study focuses on understanding the joint effect of using a commercial steel powder to add Fe to pure Ti and its processing by press-and-sinter on the behaviour of low-cost PM Ti alloys. It is found that the calibrated addition of steel permits to develop new low-cost Fe-bearing Ti alloys that can satisfactorily be produced using the blending elemental PM approach. Densification of the samples and homogenization of the chemical composition are enhanced by the high diffusivity of Fe. The low-cost α+β alloys reach comparable physical and mechanical properties to those of wrought-equivalent PM Ti alloys, such as Ti-6Al-4V, and are therefore promising candidates for load-bearing lightweight products.


Sign in / Sign up

Export Citation Format

Share Document