Characteristics of titanium nitride films grown by pulsed laser deposition

1996 ◽  
Vol 11 (6) ◽  
pp. 1458-1469 ◽  
Author(s):  
R. Chowdhury ◽  
R. D. Vispute ◽  
K. Jagannadham ◽  
J. Narayan

Laser physical vapor deposition (LPVD) has been used to grow titanium nitride films on hydrogen-terminated silicon(100) substrates at deposition temperatures ranging from room temperature to 600 °C. A pulsed KrF excimer laser (λ = 248 nm, τ = 25 ns) was used with the deposition chamber maintained at a base pressure of 10−7 Torr prior to deposition. Different properties of the films were investigated by x-ray diffraction, Auger electron spectroscopy, Raman spectroscopy, optical, scanning, and high resolution transmission electron microscopy, and measurement of electrical resistivity. When the substrate temperature was low (at and below 500 °C), oxygen atoms from the residual gases were incorporated in the films. The microstructures and resistivities of TiN films were found to be strongly dependent on the temperature of the silicon substrates. The TiN films deposited at 600 °C were oxygen-free, as observed from Auger analysis, and the room temperature resistivity was found to be 14–15 μΩ-cm. Raman spectroscopy of the films showed that the nitrogen-related optical phonon peak increased with deposition temperature in comparison with the titanium-related acoustic peak. Transmission electron microscopy and x-ray diffraction analyses showed that the films were polycrystalline at low temperature with grain size ranging from 300–600 Å, depending on the temperature of the substrate. At 600 °C, the films were found to be single crystals with occasional presence of dislocation loops. The spacing of Moiré fringes in TiN/Si samples deposited at 600 °C established the nearly periodic elastic strain field extending into the TiN and Si at the interface. Although there exists a large misfit between TiN and Si (24.6%), the epitaxial growth of TiN films on Si(100) substrates was explained by means of domain-matched epitaxy with a 4-to-3 match in unit cells for TiN/Si structure, giving rise to a residual lattice misfit of only 4%.

2015 ◽  
Vol 1102 ◽  
pp. 79-82
Author(s):  
R. Yuvakkumar ◽  
Sun Ig Hong

We report successful synthesis of baddeleyite type monoclinic zirconium oxide nanocrystals formation. The product mixture of zirconium incubated at room temperature for 7 days were thoroughly investigated employing X-ray diffraction, Raman spectroscopy and transmission electron microscopy studies. XRD and Raman studies revealed the formation of baddeleyite type monoclinic zirconium oxide nanocrystals. TEM studies revealed the nanocrystal formation with size ranging from 100 nm to 200 nm.


1996 ◽  
Vol 11 (12) ◽  
pp. 3146-3151 ◽  
Author(s):  
E. Czerwosz ◽  
P. Byszewski ◽  
R. Diduszko ◽  
H. Wronka ◽  
P. Dluźewski ◽  
...  

C60/C70: Ni films with 1.5 wt. % Ni concentration obtained by vacuum deposition under different thermal conditions have been investigated. The structural changes of the layers were investigated by transmission electron microscopy, electron and x-ray diffraction, and Raman spectroscopy. The polycrystalline structure was detected for the layers grown at approximately 450 K on the substrate. At elevated temperature and maintained temperature gradient on the substrate during the process, the changes of the layer's structure and the formation of Ni microcrystals were observed. The Ni microcrystals (5–10 nm in the diameter) and the elongated shapes dimensioned 10 × 150 nm were perceived.


1997 ◽  
Vol 12 (6) ◽  
pp. 1441-1444 ◽  
Author(s):  
L. Armelao ◽  
A. Armigliato ◽  
R. Bozio ◽  
P. Colombo

The microstructure of Fe2O3 sol-gel thin films, obtained from Fe(OCH2CH3)3, was investigated by x-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. Samples were nanocrystalline from 400 °C to 1000 °C, and the crystallized phase was haematite. In the coatings, the α–Fe2O3 clusters were dispersed as single particles in a network of amorphous ferric oxide.


2012 ◽  
Vol 02 (01) ◽  
pp. 1250007 ◽  
Author(s):  
LAXMAN SINGH ◽  
U. S. RAI ◽  
K. D. MANDAL ◽  
MADHU YASHPAL

Ultrafine powder of CaCu2.80Zn0.20Ti4O12 ceramic was prepared using a novel semi-wet method. DTA/TG analysis of dry powder gives pre-information about formation of final product around 800°C. The formation of single phase was confirmed by X-ray diffraction analysis. The average particle size of sintered powder of the ceramic obtained from XRD and Transmission electron microscopy was found 59 nm and 102 nm, respectively. Energy Dispersive X-ray studies confirm the stoichiometry of the synthesized ceramic. Dielectric constant of the ceramic was found to be 2617 at room temperature at 1 kHz.


2014 ◽  
Vol 21 (1) ◽  
pp. 108-119 ◽  
Author(s):  
Daniela Nunes ◽  
Lídia Santos ◽  
Paulo Duarte ◽  
Ana Pimentel ◽  
Joana V. Pinto ◽  
...  

AbstractThe present work reports a simple and easy wet chemistry synthesis of cuprous oxide (Cu2O) nanospheres at room temperature without surfactants and using different precursors. Structural characterization was carried out by X-ray diffraction, transmission electron microscopy, and scanning electron microscopy coupled with focused ion beam and energy-dispersive X-ray spectroscopy. The optical band gaps were determined from diffuse reflectance spectroscopy. The photoluminescence behavior of the as-synthesized nanospheres showed significant differences depending on the precursors used. The Cu2O nanospheres were constituted by aggregates of nanocrystals, in which an on/off emission behavior of each individual nanocrystal was identified during transmission electron microscopy observations. The thermal behavior of the Cu2O nanospheres was investigated with in situ X-ray diffraction and differential scanning calorimetry experiments. Remarkable structural differences were observed for the nanospheres annealed in air, which turned into hollow spherical structures surrounded by outsized nanocrystals.


2013 ◽  
Vol 27 (29) ◽  
pp. 1350211 ◽  
Author(s):  
ARBAB MOHAMMAD TOUFIQ ◽  
FENGPING WANG ◽  
QURAT-UL-AIN JAVED ◽  
QUANSHUI LI ◽  
YAN LI

In this paper, single crystalline tetragonal MnO 2 nanorods have been synthesized by a simple hydrothermal method using MnSO 4⋅ H 2 O and Na 2 S 2 O 8 as precursors. The crystalline phase, morphology, particle sizes and component of the as-prepared nanomaterial were characterized by employing X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and energy-dispersive X-ray spectroscopy (EDS). The photoluminescence (PL) emission spectrum of MnO 2 nanorods at room temperature exhibited a strong ultraviolet (UV) emission band at 380 nm, a prominent blue emission peak at 453 nm as well as a weak defect related green emission at 553 nm. Magnetization (M) as a function of applied magnetic field (H) curve showed that MnO 2 nanowires exhibited a superparamagnetic behavior at room temperature which shows the promise of synthesized MnO 2 nanorods for applications in ferrofluids and the contrast agents for magnetic resonance imaging. The magnetization versus temperature curve of the as-obtained MnO 2 nanorods shows that the Néel transition temperature is 94 K.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Jinghua Liu ◽  
Yinghua Niu ◽  
Xiong He ◽  
Jingyao Qi ◽  
Xin Li

TiO2-graphene (TiO2-RGO) nanocomposites were preparedviaa simple chemical method by using graphene oxide (GO) and TiO2nanoparticles as starting materials. The morphologies and structural properties of the as-prepared composites were characterized by X-ray diffraction, Raman spectroscopy, N2adsorption-desorption measurements, and transmission electron microscopy. TiO2-RGO nanocomposites exhibited great photocatalytic activity toward reduction of CO2into CH4(2.10 μmol g−1 h−1) and CH3OH (2.20 μmol g−1 h−1), which is attributed to the synergistic effect between TiO2and graphene.


2006 ◽  
Vol 21 (12) ◽  
pp. 3109-3123 ◽  
Author(s):  
S. Gupta ◽  
R.J. Patel ◽  
R.E. Giedd

Influence of low and medium energy electron beam (E-beam) irradiation on the single-walled (SW) and multiwalled (MW) carbon nanotube films grown by microwave chemical vapor deposition are investigated. These films were subjected to electron beam energy of 50 keV from scanning electron microscope for 2.5, 5.5, 8.0, and 15 h and 100, 200, and 300 keV from transmission electron microscope electron gun for a few minutes to approximately 2 h continuously. To assess the surface modifications/structural degradation, the films were analyzed prior to and post-irradiation using x-ray diffraction and micro-Raman spectroscopy in addition to in situ monitoring by scanning and high-resolution transmission electron microscopy. A minimal increase in intertube or interplanar spacing (i.e., d002) for MW nanotubes ranging from 3.25–3.29 Å (∼3%) can be analogized to change in c-axis of graphite lattice due to thermal effects measured using x-ray diffraction. Resonance Raman spectroscopy revealed that irradiation generated defects in the lattice evaluated through variation of: the intensity of radial breathing mode (RBM), intensity ratio of D to G band (ID/IG), position of D and G bands and their harmonics (D* and G*). The increase in the defect-induced D band intensity, quenching of RBM intensity, and only a slight increase in G band intensity are some of the implications. The MW nanotubes tend to reach a state of saturation for prolonged exposures, while SW transforming semiconducting to quasi-metallic character. Softening of the q = 0 selection rule is suggested as a possible way to explain these results. It is also suggestive that knock-on collision may not be the primary cause of structural degradation, rather a local gradual reorganization, i.e., sp2+δ ⇔ sp2+δ, sp2 C seems quite possible. Experiments showed that with extended exposures, both kinds of nanotubes displayed various local structural instabilities including pinching, graphitization/amorphization, and forming intra-molecular junction (IMJ) within the area of electron beam focus possibly through amorphous carbon aggregates. They also displayed curling and closure forming nano-ring and helix-like structures while mending their dangling bonds. High-resolution transmission electron microscopy electrons corroborated these conclusions. Manufacturing of nanoscale structures “nano-engineering” of carbon-based systems is tentatively ascribed to irradiation-induced solid-state phase transformation, in contrast to conventional nanotube synthesis from the gas phase.


Sign in / Sign up

Export Citation Format

Share Document