Growth and electronic properties of epitaxial TiN thin films on 3C-SiC(001) and 6H-SiC(0001) substrates by reactive magnetron sputtering

1996 ◽  
Vol 11 (10) ◽  
pp. 2458-2462 ◽  
Author(s):  
L. Hultman ◽  
H. Ljungcrantz ◽  
C. Hallin ◽  
E. Janzén ◽  
J-E. Sundgren ◽  
...  

Epitaxial TiN films were grown on cubic (3C)-SiC(001) and hexagonal (6H)-SiC(0001) substrates by ultrahigh vacuum reactive magnetron sputtering from a Ti target in a mixed Ar and N2 discharge at a substrate temperature of 700 °C. Cross-sectional transmission electron microscopy, including high-resolution imaging, showed orientational relationships TiN(001)‖3C-SiC(001), and TiN[110]‖3C-SiC[110], and TiN(111)‖6H-SiC(0001) and . In the latter case, twin-related TiN domains formed as the result of nucleation on SiC terraces with an inequivalent stacking sequence of Si and C. The TiN/SiC interface was locally atomically sharp for both SiC polytypes. Defects in the TiN layers consisted of threading double positioning domain boundaries in TiN(111) on 6H-SiC. Stacking faults in 3C-SiC did not propagate upon growth of TiN. Room-temperature resistivity of TiN films was ρ = 14 μΩ cm for 6H-SiC(0001) and ρ = 17 μΩ cm for 3C-SiC(001) substrates. Specific contact resistance of TiN to 6H-SiC(0001) was 1.3 3 10−3 Ω cm2 for a 6H-SiC substrate with an n-type doping of 5 × 1017 cm−3.

1994 ◽  
Vol 339 ◽  
Author(s):  
R. Turan ◽  
Q. Wahab ◽  
L. Hultman ◽  
M. Willander ◽  
J. -E. Sundgren

ABSTRACTWe report the fabrication and the characterization of Metal Oxide Semiconductor (MOS) structure fabricated on thermally oxidized 3C-SiC grown by reactive magnetron sputtering. The structure and the composition of the SiO2 layer was studied by cross-sectional transmission electron microscopy (XTEM) Auger electron spectroscopy (AES). Homogeneous stoichiometric SiO2 layers formed with a well-defined interface to the faceted SiC(lll) top surface. Electrical properties of the MOS capacitor have been analyzed by employing the capacitance and conductance techniques. C-V curves shows the accumulation, depletion and deep depletion phases. The capacitance in the inversion regime is not saturated, as usually observed for wide-bandgap materials. The unintentional doping concentration determined from the 1/C2 curve was found to be as low as 2.8 × 1015 cm-3. The density of positive charges in the grown oxide and the interface states have been extracted by using high-frequency C-V and conductance techniques. The interface state density has been found to be in the order of 1011cm2-eV-1.


2015 ◽  
Vol 659 ◽  
pp. 550-554
Author(s):  
Pisitpat Nimnual ◽  
Aparporn Sakulkalavek ◽  
Rachsak Sakdanuphab

Multi-functional thin films have gained increasing importance in a decorative application. Among the available material, titanium nitride (TiN) thin film is interesting due to its golden color and mechanical resistance. Beside their properties, the corrosion property of TiN films is mainly considered in order to extend the life time. In this work, the TiN thin films were deposited on 3x3 cm2 Si(100) substrates by dc reactive magnetron sputtering technique. The effects of N2 partial pressure (PN2) on deposited film properties such as microstructure, surface morphology, color, mechanical and corrosion properties were investigated. We found that the crystal structure of the TiN films exhibit the (200) preferred orientation. The color of TiN films change from gold-yellow to gold-red colors by increasing of N2 partial pressure that could be explained by Drude model. The TiN films have smoother surface when the N2 partial pressure increases. Standard corrosion tests in artificial sweat solution show the corrosion current density (icorr) in the range between 0.25 to 4.25 mA/cm2 and the polarization resistance increases with increasing of N2 partial pressure. The highest hardness of the film is approximately 40 GPa with elastic modulus of 340 GPa. We conclude that N2 partial pressure corelates with color, mechanical property and corrosion resistance of TiN films, which were optimized to use in decorative application.


2009 ◽  
Vol 79-82 ◽  
pp. 2275-2278
Author(s):  
Yu Qiao Shan ◽  
Xun Lei Gu ◽  
You Xin Wang

TiN thin films were deposited by D.C reactive magnetron sputtering on glass and metal substrate. The relations between the technical conditions and the properties of the thin films are studied, According to control the intensity of gas pressure by changing the flux of Ar and N2, the structure of TiN films could be control. By changing the target power、N2 flux and substrate temperature, the relations between the technical conditions and the structure of TiN thin films were analyzed so as to produce the TiN thin films of excellent decorations, good corrosion resistance and high micro-hardness.


Doklady BGUIR ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 85-93
Author(s):  
T. D. Nguyen ◽  
A. I. Zanko ◽  
D. A. Golosov ◽  
S. M. Zavadski ◽  
S. N. Melnikov ◽  
...  

The processes of reactive magnetron sputtering of a V target in Ar/O2 gas mixture are investigated. It was found that when using a pulsed current for sputtering and a pressure in the chamber less than 0.06 Pa, the intensities of the emission lines of vanadium at 437.922 nm, argon at 750.386 nm, and oxygen at 777.417 nm with a change in the oxygen concentration in Ar/O2 gas mixtures (ГO2) have no hysteresis and unambiguously depend on the parameters of the sputtering process, which makes it possible to stabilize the process without using feedback systems. By monitoring the sputtering process by optical emission spectroscopy and depositing films on a rotating substrate of diameter 100 mm, vanadium oxide (VOx) films with nonuniformity thickness less than ±2.4 % and surface resistance less than ±2.5 % were obtained. Studies by transmission line method of the influence of the parameters of the reactive magnetron sputtering and subsequent annealing at O2 pressure of 0.04 Pa on the characteristics of thermoresistive structures based on VOx films showed that when the contacts are deposited without ion cleaning, the current-voltage characteristics (IV) and the dependence of the resistance on the length of resistors R(L) are nonlinear, which indicates the presence of a potential barrier in the contacts. Preliminary ion cleaning can significantly improve the linearity of the IV characteristic. The most linear IV characteristics were obtained for Ti contacts. However, the specific contact resistance of the VOx/Ti contact increases with an increase in the oxidation state of the VOx films and reaches ρc = 0.1 Ohm·m2 at the specific resistance of vanadium oxide ρ = 0.1 Ohm·m. The analysis of the dependences of the temperature coefficient of resistance (TCR) and ρ of VOx films on the annealing temperature showed that, upon annealing, ρ and TCR slightly decrease, i. e. there occurs a partial deoxidation of the films. However, unlike annealing at atmospheric pressure, there are no temperature regions at which a sharp decrease in the resistivity and TCR occurs.


1995 ◽  
Vol 10 (6) ◽  
pp. 1349-1351 ◽  
Author(s):  
Q. Wahab ◽  
L. Hultman ◽  
I.P. Ivanov ◽  
M. Willander ◽  
J-E. Sundgren

A trilayer epitaxial structure of 3C-SiC/Si/3C-SiC was grown on Si(111) substrate by reactive magnetron sputtering. The layered structure consisted of a 300 nm thick Si layer sandwiched between two 250 nm thick 3C-SiC layers. Cross-sectional transmission electron microscopy (XTEM) showed that all layers were epitaxial to each other. The 3C-SiC layers contained stacking faults and double positioning domains with a high density in the second SiC layer. The Si layer showed the lowest density of planar faults, but developed growth facets. Observation was made of stacking faults propagating from 3C-SiC to Si layer as well as stacking faults originating at the termination of 3C-SiC double positioning boundaries into Si. The termination of Si stacking faults during growth of SiC is also reported.


2005 ◽  
Vol 20 (2) ◽  
pp. 456-463 ◽  
Author(s):  
Jiin-Long Yang ◽  
J.S. Chen ◽  
S.J. Chang

The distribution of Au and NiO in NiO/Au ohmic contact on p-type GaN was investigated in this work. Au (5 nm) films were deposited on p-GaN substrates by magnetron sputtering. Some of the Au films were preheated in N2 ambient to agglomerate into semi-connected structure (abbreviated by agg-Au); others were not preheated and remained the continuous (abbreviated by cont-Au). A NiO film (5 nm) was deposited on both types of samples, and all samples were subsequently annealed in N2 ambient at the temperatures ranging from 100 to 500 °C. The surface morphology, phases, and cross-sectional microstructure were investigated by scanning electron microscopy, glancing incident angle x-ray diffraction, and transmission electron microscopy. I-V measurement on the contacts indicates that only the 400 °C annealed NiO/cont-Au/p-GaN sample exhibits ohmic behavior and its specific contact resistance (ρc) is 8.93 × 10−3 Ω cm2. After annealing, Au and NiO contact to GaN individually in the NiO/agg-Au/p-GaN system while the Au and NiO layers become tangled in the NiO/cont-Au/p-GaN system. As a result, the highly tangled NiO-Au structure shall be the key to achieve the ohmic behavior for NiO/cont-Au/p-GaN system.


2016 ◽  
Vol 37 (3) ◽  
pp. 289-292 ◽  
Author(s):  
M. V. Ermolenko ◽  
S. M. Zavadski ◽  
D. A. Golosov ◽  
S. N. Melnikov ◽  
E. G. Zamburg

2020 ◽  
Vol 514 ◽  
pp. 167235
Author(s):  
Monzer Maarouf ◽  
Muhammad Baseer Haider ◽  
Mohammed Fayyad Al-Kuhaili ◽  
Abdullah Aljaafari ◽  
Javed Yar Khan

Sign in / Sign up

Export Citation Format

Share Document