Sol-gel control of the micro/nanostructure of functional ceramic-ceramic and metal-ceramic composites

1998 ◽  
Vol 13 (4) ◽  
pp. 803-811 ◽  
Author(s):  
Philippe Colomban

The problems encountered to tailor simultaneously various specific chemical or physical properties are discussed. Selected polymeric precursors used in association with fine powders allow the control of the nano/microstructure of composites and hence the preparation of functional (FGM) and hierarchical reinforced (HRC) composites, making it possible to combine several kinds of fibers, interphases, and matrices in the same composite (hot microwave absorbent), to control the fiber/matrix interface (long life times composites), to achieve net-shape sintering of 3D composite matrices, and to prepare thick films of metal-ceramic composites with tailored microwave absorption (radar stealthiness).

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Erik Poloni ◽  
Florian Bouville ◽  
Christopher H. Dreimol ◽  
Tobias P. Niebel ◽  
Thomas Weber ◽  
...  

AbstractThe brick-and-mortar architecture of biological nacre has inspired the development of synthetic composites with enhanced fracture toughness and multiple functionalities. While the use of metals as the “mortar” phase is an attractive option to maximize fracture toughness of bulk composites, non-mechanical functionalities potentially enabled by the presence of a metal in the structure remain relatively limited and unexplored. Using iron as the mortar phase, we develop and investigate nacre-like composites with high fracture toughness and stiffness combined with unique magnetic, electrical and thermal functionalities. Such metal-ceramic composites are prepared through the sol–gel deposition of iron-based coatings on alumina platelets and the magnetically-driven assembly of the pre-coated platelets into nacre-like architectures, followed by pressure-assisted densification at 1450 °C. With the help of state-of-the-art characterization techniques, we show that this processing route leads to lightweight inorganic structures that display outstanding fracture resistance, show noticeable magnetization and are amenable to fast induction heating. Materials with this set of properties might find use in transport, aerospace and robotic applications that require weight minimization combined with magnetic, electrical or thermal functionalities.


1991 ◽  
Vol 113 (3) ◽  
pp. 197-203
Author(s):  
C. H. Hsueh

Toughening of ceramics by incorporating strong fibers has become an established technology, resulting in the creation of a new generation of tough ceramic composites. This toughening effect is primarily due to bridging of the crack surfaces by intact fibers when the composite is subjected to tension. The fiber bridging mechanisms, which are contingent upon the stress transfer phenomena between the fiber and the matrix, are reviewed in this paper. The critical role of the properties at the fiber/matrix interface in controlling the stress transfer phenomena is examined. Finally, evaluations of the interfacial properties of the composite by the indentation technique and the corresponding analysis are presented.


1986 ◽  
Vol 78 ◽  
Author(s):  
D. B. Narshall

ABSTRACTResults of recent micromechanics analyses of the reinforcing influence of frictionally bonded fibers in ceramic composites are summnarized. Direct measurements of the fiber/matrix interface properties are also discussed.


1994 ◽  
Vol 28 (7) ◽  
pp. 638-655 ◽  
Author(s):  
Chun-Hway Hsueh

Both the fiber push-in and the slice compression tests have been used to evaluate the interfacial properties of fiber-reinforced ceramic composites. Mechanics of sliding at the fiber-matrix interface obtained with these two tests are compared in the present study. While the interfacial radial stress induced by Poisson's effect is always compressive for the push-in test, it is tensile for the slice compression test when the fiber is stiffer than the matrix. This difference in Poisson's effect results in different interfacial frictional resistance between these two tests. Compared to the push-in test, the slice compression test produces a lower frictional resistance along the debonded interface. The interfacial frictional stress during unloading is lower than that during loading for the push-in test, but this trend is reversed for the slice compression test.


1990 ◽  
Vol 194 ◽  
Author(s):  
Ronald J. Kerans ◽  
Paul D. Jero ◽  
Triplicane A. Parthasarathy ◽  
Amit Chatterjee

AbstractIt has been evident for some time that the mechanical properties of the fiber/matrix interface play an important role in determining the mechanical behavior of ceramic composites (for reviews, see [1], [2], and [3[). Recently there has been a growing interest in the role of the fiber/matrix interface in intermetallic matrix composites. While ceramic and intermetallic composites are certainly very different materials, understanding the behavior of one will provide insight into the other. Furthermore, the basic issues regarding the determination of interface properties are the same. The accuracy of micromechanics models of any composite system is dependent upon the accuracy of all the constituent and interface properties. It is far preferable to measure actual materials constants rather than test-specific quantities. The tests described here are intended to measure the interfacial shear strength (or mode II toughness) and the interfacial tensile strength. The objective of this work is to briefly outline a few of the approaches which are being evaluated for and applied to ceramic composites, and which may be of interest to investigators working in intermetallic composites.


Sign in / Sign up

Export Citation Format

Share Document