Optical and electrical properties of transparent conducting In2O3–ZrO2 films

2000 ◽  
Vol 15 (1) ◽  
pp. 21-24 ◽  
Author(s):  
S. B. Qadri ◽  
H. Kim ◽  
H. R. Khan ◽  
A. Piqué ◽  
J. S. Horwitz ◽  
...  

The optical transparencies and electrical conductivities of thin films of In2O3 mixed with ZrO2 have been investigated. These films were deposited on glass substrates at room temperature using pulsed-laser deposition. Indium–zirconium oxide films with a ZrO2 content up to a 15 wt% were conducting and more than 80% transparent from 450 to 700 nm. As the ZrO2 content increased from 0 to 15 wt%, the electrical resistivities increased from 1.28 × 10−3 to 6.48 × 10−2 Ω cm, the carrier densities were decreased from 2.14 × 1020 to 1.0 × 1018/cm3, and the Hall mobilities decreased from 21 to 5 cm2 V−1 s−1, all monotonically.

2004 ◽  
Vol 19 (3) ◽  
pp. 759-767 ◽  
Author(s):  
S. Bysakh ◽  
K. Chattopadhyay ◽  
H. Ling ◽  
J.D. Wu ◽  
C. Dong ◽  
...  

We report the synthesis of thin films of B–C–N and C–N deposited by N+ ion-beam-assisted pulsed laser deposition (IBPLD) technique on glass substrates at different temperatures. We compare these films with the thin films of boron carbide synthesized by pulsed laser deposition without the assistance of ion-beam. Electron diffraction experiments in the transmission electron microscope shows that the vapor quenched regions of all films deposited at room temperature are amorphous. In addition, shown for the first time is the evidence of laser melting and subsequent rapid solidification of B4C melt in the form of micrometer- and submicrometer-size round particulates on the respective films. It is possible to amorphize B4C melt droplets of submicrometer sizes. Solidification morphologies of micrometer-size droplets show dispersion of nanocrystallites of B4C in amorphous matrix within the droplets. We were unable to synthesize cubic carbon nitride using the current technique. However, the formation of nanocrystalline turbostratic carbo- and boron carbo-nitrides were possible by IBPLD on substrate at elevated temperature and not at room temperature. Turbostraticity relaxes the lattice spacings locally in the nanometric hexagonal graphite in C–N film deposited at 600 °C leading to large broadening of diffraction rings.


1995 ◽  
Vol 397 ◽  
Author(s):  
H. M. Phillips ◽  
Li Yunjun ◽  
Bi Zhaoqi ◽  
Zhang Binglin

ABSTRACTTransparent conducting thin films of approximately 1000-2000 Å were deposited on glass, quartz and silicon substrates using standard pulsed laser deposition techniques with two different targets (Sn and SnO2) and with three different laser wavelengths (1.06, 0.532 and 0.266 urn) from a Q-switched Nd:YAG laser. Composite films of SnO2 and Sn with high optical transmission were obtained using a Sn target and a background oxygen pressure of 20 Pa with optical transmission over most of the visible spectrum exceeding 80%. Electrical resistivities of approximately 10-2 Ω-cm were obtained. Using SnO2 targets, predominantly amorphous phase SnO2 films were deposited on Si substrates and then transformed into polycrystalline Sn3O4 by laser induced crystallization (λ = 1.06 μm). The electrical resistivity of these films was also permanently reduced by a factor greater than 1000.


2010 ◽  
Vol 75 ◽  
pp. 202-207
Author(s):  
Victor Ríos ◽  
Elvia Díaz-Valdés ◽  
Jorge Ricardo Aguilar ◽  
T.G. Kryshtab ◽  
Ciro Falcony

Bi-Pb-Sr-Ca-Cu-O (BPSCCO) and Bi-Pb-Sb-Sr-Ca-Cu-O (BPSSCCO) thin films were grown on MgO single crystal substrates by pulsed laser deposition. The deposition was carried out at room temperature during 90 minutes. A Nd:YAG excimer laser ( = 355 nm) with a 2 J/pulse energy density operated at 30 Hz was used. The distance between the target and substrate was kept constant at 4,5 cm. Nominal composition of the targets was Bi1,6Pb0,4Sr2Ca2Cu3O and Bi1,6Pb0,4Sb0,1Sr2Ca2Cu3OSuperconducting targets were prepared following a state solid reaction. As-grown films were annealed at different conditions. As-grown and annealed films were characterized by XRD, FTIR, and SEM. The films were prepared applying an experimental design. The relationship among deposition parameters and their effect on the formation of superconducting Bi-system crystalline phases was studied.


2004 ◽  
Vol 36 (4-6) ◽  
pp. 403-408 ◽  
Author(s):  
D. O’Mahony ◽  
F. McGee ◽  
M. Venkatesan ◽  
J.G. Lunney ◽  
J.M.D. Coey

2000 ◽  
Vol 15 (10) ◽  
pp. 2249-2265 ◽  
Author(s):  
Jeanne M. McGraw ◽  
John D. Perkins ◽  
Falah Hasoon ◽  
Philip A. Parilla ◽  
Chollada Warmsingh ◽  
...  

We have found that by varying only the substrate temperature and oxygen pressure five different crystallographic orientations of V2O5 thin films can be grown, ranging from amorphous to highly textured crystalline. Dense, phase-pure V2O5 thin films were grown on SnO2/glass substrates and amorphous quartz substrates by pulsed laser deposition over a wide range of temperatures and oxygen pressures. The films' microstructure, crystallinity, and texturing were characterized by electron microscopy, x-ray diffraction, and Raman spectroscopy. Temperature and oxygen pressure appeared to play more significant roles in the resulting crystallographic texture than did the choice of substrate. A growth map summarizes the results and delineates the temperature and O2 pressure window for growing dense, uniform, phase-pure V2O5 films.


2003 ◽  
Vol 763 ◽  
Author(s):  
K. Matsubara ◽  
H. Tampo ◽  
A. Yamada ◽  
P. Fons ◽  
K. Iwata ◽  
...  

AbstractLow resistivity and transparent Al doped ZnMgO films were deposited on glass substrates by a pulsed laser deposition system. For up to 32 atm% of Mg content, segregation of a MgO phase was not observed. The bandgap of these films could be widened to about 4 eV with increasing Mg content. The relation between bandgap and resistivity was found to be a trade-off; i.e. the larger the bandgap, the higher the resistivity. The maximum bandgap among films with an electrical resistivity of less than 10-3 Ω cm was 3.94 eV. The average optical transmittance of these films was more than 90 % for wavelengths λ between 400 and 1100 nm. The transmittance around λ = 330 nm was still 50 %.


2019 ◽  
Vol 15 (34) ◽  
pp. 41-54
Author(s):  
Iqbal S. Naji

The influence of sintering and annealing temperatures on the structural, surface morphology, and optical properties of Ag2Cu2O4 thin films which deposited on glass substrates by pulsed laser deposition method have been studied. Ag2Cu2O4 powders have polycrystalline structure, and the Ag2Cu2O4 phase was appear as low intensity peak at 35.57o which correspond the reflection from (110) plane. Scan electron microscopy images of Ag2Cu2O4 powder has been showed agglomerate of oxide particles with platelets shape. The structure of thin films has been improved with annealing temperature. Atomic Force micrographs of Ag2Cu2O4 films showed uniform, homogenous films and the shape of grains was almost spherical and larger grain size of 97.85 nm has obtained for film sintered at 600 °C. The optical band gap was increase from 1.6 eV to 1.65 eV when sintering temperature increased to 300 °C and decrease to 1.45 eV at 600 °C for the films deposited at room temperature. Heat treatment of films has been increased the energy band with increasing sintering temperature. Hall coefficient of Ag2Cu2O4 films have a positive sign which means the charge carrier is a p-type. The electrical conductivity decreases with increasing of the sintering temperature for as deposited and annealed films.


Sign in / Sign up

Export Citation Format

Share Document