Synthesis and characterization of nanoparticles of Ba2EuZrO5.5: A new complex perovskite ceramic oxide

2000 ◽  
Vol 15 (10) ◽  
pp. 2125-2130 ◽  
Author(s):  
R. Jose ◽  
J. James ◽  
Asha M. John ◽  
R. Divakar ◽  
J. Koshy

Nanoparticles of barium europium zirconate, a complex perovskite oxide, were synthesized using a modified self-propagating combustion synthesis. The solid combustion products thus obtained were characterized by x-ray and electron diffraction, differential thermal analysis, thermogravimetric analysis, infrared spectroscopy, particle-size analysis, surface area determination, gas adsorption studies, and high-resolution transmission electron microscopy. According to the results of the x-ray and electron diffraction, as-prepared powder showed the single phase of barium europium zirconate (Ba2EuZrO5.5) without another phase and had a complex cubic perovskite (A2BB′O6) structure. The transmission electron microscopic investigation showed a mean grain size of 38 nm with a standard deviation of 12 nm. High-resolution lattice imaging of the nanoparticles indicated the possibility of finer crystallite in the particle having the same orientation. The nanoparticles of Ba2EuZrO5.5 obtained by the present method could be sintered to 97% theoretical density at a relatively low temperature of 1525 °C.

1989 ◽  
Vol 169 ◽  
Author(s):  
Rollin E. Lakis ◽  
Sidney R. Butler

AbstractY1Ba2Cu3O7 has been prepared by the evaporative decomposition of solutions method. Nitrate and mixed anion solutions were atomized and decomposed at temperatures ranging from 300°C to 950°C. The resulting materials have been characterized using x-ray powder diffraction, Thermal Gravimetric Analysis (TGA), particle size analysis, Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). The powder consists of 0.3 micron agglomerated hollow spheres with a primary particle size of 0.06 micron. TGA and x-ray diffraction indicate the presence of barium nitrate and barium carbonate due to incomplete decomposition and/or product contamination by the process environment.


2011 ◽  
Vol 189-193 ◽  
pp. 1036-1039
Author(s):  
Jing Ling Ma ◽  
Jiu Ba Wen ◽  
Yan Fu Yan

The precipitates of Al-5Zn-0.02In-1Mg-0.05Ti-0.5Ce (wt %) anode alloy were studied by scanning electron microscopy, X-ray microanalysis, high resolution transmission electron microscopy and selected area electron diffraction analyses in the present work. The results show that the alloy mainly contains hexagonal structure MgZn2 and tetragonal structure Al2CeZn2 precipitates. From high resolution transmission electron microscopy and selected area electron diffraction, aluminium, Al2CeZn2 and MgZn2 phases have [0 1 -1]Al|| [1 -10]Al2CeZn2|| [-1 1 0 1]MgZn2orientation relation, and Al2CeZn2 and MgZn2 phases have the [0 2 -1]Al2CeZn2|| [0 1 -10]MgZn2orientation relation.


1998 ◽  
Vol 553 ◽  
Author(s):  
C. Reich ◽  
M. Conrad ◽  
F. Krumeich ◽  
B. Harbrecht

AbstractThe dodecagonal (dd) quasicrystalline tantalum telluride dd Ta1.6Te and the crystalline approximant Ta97Te60 have been modified by partly replacing tantalum by vanadium. The impact of the substitution on the structures has been studied by X-ray and electron diffraction and by high-resolution transmission electron microscopy. The layered-type approximant structure of Ta83V14Te60 was determined by single crystal X-ray means. The partitioning of vanadium on 21 out of 29 crystallographically inequivalent metal sites is referred to, but not controlled by the Dirichlet domain volume available at the sites. A HRTEM projection of dd (Ta, V)1.6Te onto the dodecagonal plane is analysed with respect to the arrangement of (Ta, V)151Te74 clusters on the vertices of an irregular aperiodic square-triangle tiling, the edge length of which corresponds to the distance between the centres of two such clusters. The clusters comprise about 1 nm thick corrugated lamellae which are periodically stacked by weak Te-Te interactions.


2018 ◽  
Vol 90 (5) ◽  
pp. 833-844
Author(s):  
Leonid Aslanov ◽  
Valery Zakharov ◽  
Ksenia Paseshnichenko ◽  
Aleksandr Yatsenko ◽  
Andrey Orekhov ◽  
...  

AbstractA new method for synthesis of 2D nanocrystals in water was proposed. The use of perfluorothiophenolate ions as surfactant allowed us to produce 2D single-crystal nanosheets of CaS at pH=9 and flat nanocrystals of PbS at pH=9 at room temperature. Mesocrystalline nanobelts of CdS and mesocrystals of PbS were obtained at pH=3–5 and pH=10–12, respectively. Morphology, structure and chemical composition of nanoparticles were characterized by high-resolution transmission electron microscopy, electron diffraction and energy dispersive X-ray spectroscopy. A mechanism of nanoparticles formation was discussed.


2005 ◽  
Vol 884 ◽  
Author(s):  
Carmen M. Andrei ◽  
John C. Walmsley ◽  
Randi Holmestad ◽  
Gianluigi A. Botton ◽  
Sesha S. Srinivasan ◽  
...  

AbstractTi doped NaAlH4 hydride is proposed as a reversible hydrogen storage material. In this work, the microstructure of NaAlH4 with 2% TiCl3 additive was studied after 5 hydrogen cycles using a combination of transmission electron microscopy (TEM) techniques including energy dispersive spectroscopy (EDS) X-ray analysis. Selected area diffraction and high-resolution (HR) imaging confirmed the presence of the NaH phase in the material. Electron diffraction was dominated by Al. HRTEM showed the presence of edge dislocations, which might influence the hydrogen diffusivity process in these materials.


Author(s):  
Andrew J. Lovinger ◽  
Bernard Lotz ◽  
Don D. Davis

In contrast to its isotactic isomer, syndiotactic polypropylene has received only little attention. Our main source of understanding of its structure is the X-ray study by Conradini et al., who found the chains to have a (t2g2)2 conformation (corresponding to a 4∗2/1 helix with molecular repeat 0.74 nm), and to be packed in a C-centered unit cell as shown in the left side of Fig. 1. We have recently begun a study of the structure, crystallization, and morphology of syndiotactic polypropylene using electron microscopy and diffraction. Here we concentrate specifically on the electron-diffraction evidence as a function of temperature, in order to obtain an understanding of the evolution and variation of structure in this polymer.Thin films of syndiotactic polypropylene (synthesized by Dr. R. E. Cais as reported previously) were prepared by casting from dilute solution in xylenes at ca. 140°c onto freshly cleaved mica substrates. Following evaporation of the solvent, they were melted and then isothermally crystallized at a variety of temperatures. After shadowing with Pt/C and coating with carbon, they were floated off their substrates for examination by transmission electron microscopy (bright- and dark-field) and selected-area electron diffraction at 100-200 keV.


2018 ◽  
Vol 2 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Brent L. Nannenga ◽  
Tamir Gonen

Micro-electron diffraction, or MicroED, is a structure determination method that uses a cryo-transmission electron microscope to collect electron diffraction data from nanocrystals. This technique has been successfully used to determine the high-resolution structures of many targets from crystals orders of magnitude smaller than what is needed for X-ray diffraction experiments. In this review, we will describe the MicroED method and recent structures that have been determined. Additionally, applications of electron diffraction to the fields of small molecule crystallography and materials science will be discussed.


Clay Minerals ◽  
1993 ◽  
Vol 28 (4) ◽  
pp. 531-537 ◽  
Author(s):  
P. McFadyen ◽  
D. Fairhurst

AbstractModem disc centrifuge technology has extended the range of application of sedimentation particle size analysis to include the submicron region. An overall size range of approximately 10 nm to 100 pm is now accessible. The principles of both the disc centrifuge photosedimentometer, which employs optical detection with full Mie light scattering corrections, and the X-ray disc centrifuge are described. Examples of their application to a variety of samples are given to illustrate the performance characteristics of the instruments including a direct comparison of resolving power with that of the laser diffraction technique.


2007 ◽  
Vol 561-565 ◽  
pp. 243-246 ◽  
Author(s):  
Junya Nakamura ◽  
Kenji Matsuda ◽  
Yoshio Nakamura ◽  
Tatsuo Sato ◽  
Susumu Ikeno

The purpose of this study is to identify the crystal structure of metastable phase in Ag added Al-Mg-Si alloy to compare the formation of β’-phases in Al-Mg-Si alloys without Ag, using images of high resolution transmission electron microscope (HRTEM), selected area electron diffraction (SAED) patterns and an energy dispersive X-ray spectroscopy (EDS). The result of SAED patterns and HRTEM images have been simulated and compared with images then SAED patterns obtained from actual precipitates. SAED patterns and HRTEM images obtained from metastable phase in the Ag added Al-Mg-Si alloy showed similar to those of β’-phase in Al-Mg-Si alloy without Ag and the lattice spacings changed because of the effect of Ag.


Author(s):  
Ronald M. Anderson ◽  
Somnath Dash

Recently, studies of platinum-silicon ohmic contacts in semiconductor device metallurgy have prompted us to make an investigation into the nature of the reaction between silicon and platinum. We confined ourselves to Pt deposition temperatures, annealing temperatures, and thicknesses that were germane to the production of ohmic contacts.Transmission electron microscopy, selected area electron diffraction, and reflection electron diffraction analysis, coordinated with x-ray diffraction studies, were performed and allowed us to make the following observations.


Sign in / Sign up

Export Citation Format

Share Document