Structural and dielectric characterization of Ba4Nd2Ti4+xTa6−xO30−x/2 nonstoichiometric ceramics

2001 ◽  
Vol 16 (10) ◽  
pp. 2859-2863 ◽  
Author(s):  
X. M. Chen ◽  
X. H. Zheng ◽  
J. Wang

Ba4Nd2Ti4Ta6O30 dielectric ceramics with high-Ε and low dielectric loss were modified to improve the temperature coefficient of dielectric constant. Through partial substitution of Ti4+ for Ta5+, a significantly reduced temperature coefficient of dielectric constant (tΕ = –664p pm/°C) combined with a dielectric constant above 110 and a low dielectric loss (tanδ–0.0005 to 0.0006 at 1 MHz) resulted in the nonstoichiometric dielectric ceramics with nominal compositions Ba4Nd2Ti4+xTa6-xO30?x/2 (x = 0.8–1.2).

1999 ◽  
Vol 14 (8) ◽  
pp. 3375-3378 ◽  
Author(s):  
J. Wang ◽  
X. M. Chen ◽  
J. S. Yang

Biphase dielectric ceramics in the system of (1 − x)Ba4Nd2Ti4Ta6O30/ x(La0.1Bi0.9) 2Ti2O7 were investigated to obtain a near-zero temperature coefficient of dielectric constant. With the increase in x, the dielectric constant increased slightly, and the temperature coefficient changed from negative to positive. High dielectric constant of ε = 143 and good temperature stabibility (τ ε = −48 ppm/ °C) were achieved in a composition of x = 0.45, and the increased dielectric loss became the new problem.


2000 ◽  
Vol 15 (1) ◽  
pp. 125-129 ◽  
Author(s):  
X. M. Chen ◽  
Z. Y. Xu ◽  
J. Li

Dielectric ceramics in the BaO–Sm2O3–TiO2–Ta2O5 quaternary system were prepared and characterized for five typical compositions: BaSm5Ti7Ta3O30, Ba2Sm4Ti6Ta4O30, Ba3Sm3Ti5Ta5O30, Ba4Sm2Ti4Ta6O30, and Ba5SmTi3Ta7O30. The latter three compositions tended to form the tungsten–bronze phase, and the ceramics based on these compositions had a high dielectric constant (134–175) and a low dielectric loss (on the order of 10−3) but a larger temperature coefficient of the dielectric constant. Meanwhile, the former two compositions generally had a more complex phase constitution, containing the tungsten–bronze phase combined with some unknown phase, and a relatively small temperature coefficient of the dielectric constant in the temperature range of 20 to 85 °C could be achieved in these two compositions.


2018 ◽  
Vol 6 (9) ◽  
pp. 2370-2378 ◽  
Author(s):  
Yang Liu ◽  
Cheng Zhang ◽  
Benyuan Huang ◽  
Xu Wang ◽  
Yulong Li ◽  
...  

A novel skin–core structured fluorinated MWCNT nanofiller was prepared to fabricate epoxy composite with broadband high dielectric constant and low dielectric loss.


1990 ◽  
Vol 180 ◽  
Author(s):  
G. Teowee ◽  
J.M. Boulton ◽  
H.H. Fox ◽  
A. Koussa ◽  
T. Gudgel ◽  
...  

ABSTRACTPolycerams are an emergent class of hybrid, multifunctional materials which combine the properties of organic and inorganic materials. Films have been prepared from silicon alkoxides and reactive, functionalized polymers such as triethoxysilyl modified polybutadiene (MPBD), (N-triethoxysilylpropyl)O polyethylene oxide urethane (MPEOU) and trimethoxysilylpropyl substituted polyethyleneimine (MPEI). Characterization of dielectric constant and tan δ of the films has been carried out over a range of frequency from 500 Hz to 100 kHz; and the results are used to consider the potential of Polycerams as dielectric materials.


2009 ◽  
Vol 24 (2) ◽  
pp. 324-332 ◽  
Author(s):  
X.T. Liew ◽  
K.C. Chan ◽  
L.B. Kong

This paper reports on the preparation and characterization of nickel ferrite (NiFe1.98O4) ceramics doped with Bi2O3 as sintering aid. Focus has been on the effects of concentration of Bi2O3 and sintering temperature on the densification, grain growth, dielectric, and magnetic properties of the NiFe1.98O4 ceramics, with an aim at developing magnetodielectric properties, with almost equal real permeability and permittivity, as well as sufficiently low magnetic and dielectric loss tangents, over 3 to 30 MHz (high frequency or HF band). X-ray diffraction results indicated that there is no obvious reaction between NiFe1.98O4 and Bi2O3, at Bi2O3 levels of up to 7 wt% and temperatures up to 1150 °C. The addition of Bi2O3 facilitated a liquid phase sintering mechanism for the densification of NiFe1.98O4 ceramics. The addition of Bi2O3 not only improved the densification but also promoted the grain growth of NiFe1.98O4 ceramics. To achieve sufficiently low dielectric loss tangent, the concentration of Bi2O3 should not be less than 5 wt%. The low dielectric loss tangents of the samples doped with high concentrations of Bi2O3 can be attributed to the full densification of the ceramics. Magnetic properties of the NiFe1.98O4 ceramics, as a function of sintering temperature and Bi2O3 concentration, can be qualitatively explained by the Globus model. Promising magnetodielectric properties have been obtained in the sample doped with 5% Bi2O3 and sintered at 1050 °C for 2 h. The sample has almost equal values of permeability and permittivity of ∼12, together with low dielectric and magnetic loss tangents, over 3 to 30 MHz. This material might be useful for the miniaturization of HF (3 to 30 MHz) antennas.


Sign in / Sign up

Export Citation Format

Share Document