High Thermal Conductivity Materials

MRS Bulletin ◽  
2001 ◽  
Vol 26 (6) ◽  
pp. 440-444 ◽  
Author(s):  
Koji Watari ◽  
Subhash L. Shinde

Every university student becomes familiar with the concept of thermal conductivity, a fundamental physical property of materials, through his or her textbooks. Initial work on high thermal conductivity was carried out in 1911 by Eucken, who discovered that diamond was a reasonably good conductor for heat at room temperature. Theoretical support for this discovery was established by Debye in 1914.

1994 ◽  
Vol 38 ◽  
pp. 479-487 ◽  
Author(s):  
O. N. Grigoriev ◽  
S. M. Kushnerenko ◽  
K. A. Plotnikov ◽  
W. Kreher

Recently aluminum nitride (A1N) has been intensively studied as a promising material for production of hybrid integrated circuit substrates because of its high thermal conductivity, high fjexural strength, and nontoxic nature. The estimated theoretical value of its thermal conductivity at room temperature is 320 W/mK, but it is strongly degraded by the introduction of oxygen. The measured values vary from 30 to 260 W/mK, Therefore, in production of this material the reduction of oxygen contamination is of paramount importance.


2019 ◽  
Vol 100 (9) ◽  
Author(s):  
Ting-Han Chou ◽  
Lucas Lindsay ◽  
Alexei A. Maznev ◽  
Jateen S. Gandhi ◽  
Donna W. Stokes ◽  
...  

2020 ◽  
Vol 7 (10) ◽  
pp. 2690-2695
Author(s):  
Jianchao Lin ◽  
Peng Tong ◽  
Xuekai Zhang ◽  
Zichen Wang ◽  
Zhao Zhang ◽  
...  

The electronic entropy enhanced giant barocaloric effect along with high thermal conductivity in hexagonal Ni1−xFexS.


1995 ◽  
Vol 10 (2) ◽  
pp. 247-250 ◽  
Author(s):  
Jyh-Ming Ting ◽  
Max L. Lake

The first use of continuous vapor grown carbon fiber (VGCF) as reinforcement in aluminum metal matrix composite (Al MMC) is reported. Al MMC represents a new material for thermal management in high-power, high-density electronic devices. Due to the ultrahigh thermal conductivity of VGCF, 1950 W/m-K at room temperature, VGCF-reinforced Al MMC exhibits excellent thermal conductivity that cannot be achieved by using any other carbon fiber as reinforcement. An unprecedented high thermal conductivity of 642 W/m-K for Al MMC was obtained by using 36.5% of VGCF.


Author(s):  
Sally A. McMenamin ◽  
Annie Weathers ◽  
Virendra Singh ◽  
Michael T. Pettes ◽  
Baratunde A. Cola ◽  
...  

High thermal conductivity, comparable to that of a metal, has been observed in some stretched polyethylene nanofibers due to a decrease in defect density with the alignment of the polymer chains. Such high thermal conductivity may be useful for thermal management applications such as thermal adhesives made of aligned nanofibers. Polythiophene (Pth) is a conducting polymer that can be synthesized electrochemically as aligned nanofiber forests without the need for stretching individual fibers. Here we report the thermal conductivity of individual suspended Pth nanofibers synthesized electrochemically and measured with the use of a microfabricated device in the temperature range of 80 K to 375 K. The measured thermal conductivity increases with temperature. For three single suspended Pth nanofibers with a diameter on the order of 200 nm, the room temperature value between 0.6 and 0.8 W/m K is about four-fold higher than that reported for Pth thin films and comparable to that reported for binder-filler thermal adhesives.


RSC Advances ◽  
2020 ◽  
Vol 10 (70) ◽  
pp. 42628-42632
Author(s):  
Rajmohan Muthaiah ◽  
Fatema Tarannum ◽  
Roshan Sameer Annam ◽  
Avinash Singh Nayal ◽  
Swapneel Danayat ◽  
...  

In this work, we report a high thermal conductivity (k) of 162 W m−1 K−1 and 52 W m−1 K−1 at room temperature, along the directions perpendicular and parallel to the c-axis, respectively, of bulk hexagonal BC2P (h-BC2P), using first-principles calculations.


2013 ◽  
Vol 750-752 ◽  
pp. 512-516 ◽  
Author(s):  
Zhen Hua Jia ◽  
Xin Gui Tang ◽  
Donge Chen ◽  
Jun Bo Wu ◽  
Qiu Xiang Liu

The Al2O3 ceramics with high thermal conductivity prepared the spark plasma sintering (SPS) technology. The structure, image and magnetic properties of the SPS Al2O3 ceramics was characterized by X-ray, field emission scanning electron microscope (FE-SEM) and the vibrating sample magnetometer (VSM) at room temperature. The results shown that the average grain size of the Al2O3 ceramics is about 5~15μm, the thermal conductivity of Al2O3 ceramics up to 24.928 W/(m·K), and the remanent magnetization as higher as 0.00546emu/g and the saturation magnetization as higher as 0.0321 emu/g, respectively. The room-temperature ferromagnetism, which is different from the traditional, possibly originates from the oxygen vacancies.


2013 ◽  
Vol 28 (12) ◽  
pp. 1338-1344 ◽  
Author(s):  
Jian-Feng LIN ◽  
Guan-Ming YUAN ◽  
Xuan-Ke LI ◽  
Zhi-Jun DONG ◽  
Jiang ZHANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document