Determining In-plane and Thru-plane Percolation Thresholds for Carbon Nanotube Thin Films Deposited on Paper Substrates Using Impedance Spectroscopy

2013 ◽  
Vol 1549 ◽  
pp. 117-122 ◽  
Author(s):  
Rachel L. Muhlbauer ◽  
Rosario A. Gerhardt

ABSTRACTConcentration- and layer-dependent percolation thresholds can be determined for carbon nanotube (CNT) films deposited from aqueous dispersions on paper substrates at both the surface of the deposited film (in-plane) and through the thickness of the paper (thru-plane) using impedance spectroscopy. By analyzing the impedance spectra as a function of the number of layers (solution concentration is constant) or the solution concentration (number of layers is constant), the electrical properties and percolation thresholds for CNT-paper composites can be determined. In-plane measurements show that percolation occurs at 4 layers when 1 mg/mL solution concentration is used. In the thru-plane direction, the films are already percolated at 1 mg/mL concentration, which is confirmed by varying the concentration of the solution used to deposit 1 layer films. A second percolation event happens between 8 and 12 layers due to an increased number of interconnections of CNTs within the paper substrate. The lowest sheet resistance achieved was 100 Ω/□.

2015 ◽  
Vol 227 ◽  
pp. 515-518 ◽  
Author(s):  
Luigi Calabrese ◽  
Lucio Bonaccorsi ◽  
Chiara Borsellino ◽  
Angela Caprì ◽  
Francesca Fabiano ◽  
...  

In this work the assessment of the corrosion performances in saliva solution of NdFeB magnets coated with silane layers was studied for its application in orthodontic brackets. The silane film, deposited by dip coating technique, has been prepared with varying dipping steps, with the purpose to identify the number of layers able to achieve an optimal protective action. Corrosion protection performance, during immersion in Fusayama synthetic saliva solution, was evaluated by means electrochemical impedance spectroscopy (EIS). The silane coatings evidenced good barrier properties resulting in an improvement of the anti-corrosion performances of the magnets. Better results were observed for samples with at least 15 layers of silane, that evidenced still acceptable protective action after three days of immersion in a Fusayama synthetic saliva solution.


2007 ◽  
Vol 67 (5) ◽  
pp. 922-928 ◽  
Author(s):  
Josef Z. Kovacs ◽  
Bala S. Velagala ◽  
Karl Schulte ◽  
Wolfgang Bauhofer

2014 ◽  
Vol 71 (1) ◽  
pp. 83-88 ◽  
Author(s):  
Haibo Li ◽  
Sen Liang ◽  
Mangmang Gao ◽  
Guolong Li ◽  
Jin Li ◽  
...  

In this work, the capacitive deionization (CDI) performance of a single-walled carbon nanotube (CNT) electrode has been studied from the point view of charge efficiency theory. It is revealed here that the charge efficiency of a CNT electrode is strongly dependent upon the cell voltage and solution concentration. Either the high cell voltage or the low ionic strength results in a high charge efficiency, implying that CDI is expected to be a promising technique for an aqueous solution with low ionic strength. Additionally, it is found that the high decay constant and high electrical double-layer capacity are beneficial to enhance electrosorption performance.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Jungkyu Park ◽  
Vikas Prakash

In the present study, reverse nonequilibrium molecular dynamics is employed to study thermal resistance across interfaces comprising dimensionally mismatched junctions of single layer graphene floors with (6,6) single-walled carbon nanotube (SWCNT) pillars in 3D carbon nanomaterials. Results obtained from unit cell analysis indicate the presence of notable interfacial thermal resistance in the out-of-plane direction (along the longitudinal axis of the SWCNTs) but negligible resistance in the in-plane direction along the graphene floor. The interfacial thermal resistance in the out-of-plane direction is understood to be due to the change in dimensionality as well as phonon spectra mismatch as the phonons propagate from SWCNTs to the graphene sheet and then back again to the SWCNTs. The thermal conductivity of the unit cells was observed to increase nearly linearly with an increase in cell size, that is, pillar height as well as interpillar distance, and approaches a plateau as the pillar height and the interpillar distance approach the critical lengths for ballistic thermal transport in SWCNT and single layer graphene. The results indicate that the thermal transport characteristics of these SWCNT-graphene hybrid structures can be tuned by controlling the SWCNT-graphene junction characteristics as well as the unit cell dimensions.


2015 ◽  
Vol 48 (37) ◽  
pp. 375302 ◽  
Author(s):  
A García-García ◽  
R Vergaz ◽  
J F Algorri ◽  
M A Geday ◽  
J M Otón

2012 ◽  
Vol 52 (10) ◽  
pp. 2173-2181 ◽  
Author(s):  
Christian Penu ◽  
Guo-Hua Hu ◽  
Amaia Fernandez ◽  
Philippe Marchal ◽  
Lionel Choplin

Sign in / Sign up

Export Citation Format

Share Document