Development of Low-Temperature Sintering Cu Nanoparticles

2013 ◽  
Vol 1513 ◽  
Author(s):  
Toshitaka Ishizaki ◽  
Ryota Watanabe ◽  
Kunio Akedo ◽  
Toshikazu Satoh

ABSTRACTCu nanoparticles capped with fatty acids and amines were developed as low-temperature sintering materials. The fatty acids and amines used were decanoic acid + decyl amine (C10) and oleic acid + oleyl amine (C18), respectively. The synthesized Cu nanoparticles were analyzed using X-ray diffraction, transmission electron microscopy, and thermogravimetric and differential thermal analysis. Because both of the capping layers could be decomposed at temperatures lower than 300°C even under an inert atmosphere, bonding and sintering experiments could be carried out in the absence of oxygen to prevent the oxidation of the Cu nanoparticles. The sintered structures were observed using scanning electron microscopy. The shear strengths of Cu plates bonded using the C18 Cu nanoparticles were larger than those of plates bonded using the C10 Cu nanoparticles. At 300°C, the strength was higher than 30 MPa, and of the same order as ordinary high-temperature solders, even though the processing temperature was low. The resistivity of a film sintered using the C18 Cu nanoparticles was 12 μΩcm at 300°C, which was lower than the values reported in previous studies.

Author(s):  
R.L. Sabatini ◽  
Yimei Zhu ◽  
Masaki Suenaga ◽  
A.R. Moodenbaugh

Low temperature annealing (<400°C) of YBa2Cu3O7x in a ozone containing oxygen atmosphere is sometimes carried out to oxygenate oxygen deficient thin films. Also, this technique can be used to fully oxygenate thinned TEM specimens when oxygen depletion in thin regions is suspected. However, the effects on the microstructure nor the extent of oxygenation of specimens has not been documented for specimens exposed to an ozone atmosphere. A particular concern is the fact that the ozone gas is so reactive and the oxygen diffusion rate at these temperatures is so slow that it may damage the specimen by an over-reaction. Thus we report here the results of an investigation on the microstructural effects of exposing a thinned YBa2Cu3O7-x specimen in an ozone atmosphere using transmission electron microscopy and energy loss spectroscopy techniques.


2012 ◽  
Vol 490-495 ◽  
pp. 3211-3214 ◽  
Author(s):  
Lei Shan Chen ◽  
Cun Jing Wang

Synthesis reactions were carried out by chemical vapor deposition using iron catalyst supported on aluminum hydroxide at 400 °C and 420 °C, in the presence of argon as carrier gas and acetylene as carbon source. The aluminum hydroxide support was separated by refluxing the samples in 40% NaOH solution for 2 h and 36% HCl solution for 24 h, respectively. The samples were characterized by field-emission scanning electron microscopy, energy dispersive spectroscopy, high-resolution transmission electron microscopy and X-ray diffraction. The results show that carbon nanotubes were the main products at 420 °C, while large scale high purity nano onion-like fullerenes encapsulating Fe3C, with almost uniform sizes ranging from 10-50 nm, were obtained at the low temperature of 400 °C.


1989 ◽  
Vol 148 ◽  
Author(s):  
Zuzanna Liliental-Weber ◽  
Raymond P. Mariella

ABSTRACTTransmission electron microscopy of GaAs grown on Si for metal-semiconductor-metal photodetectors is presented in this paper. Two kinds of samples are compared: GaAs grown on a 15 Å Si epilayer grown on GaAs, and GaAs grown at low temperature (300°C) on Si substrates. It is shown that the GaAs epitaxial layer grown on thin Si layer has reverse polarity to the substrate (antiphase relation). Higher defect density is observed for GaAs grown on Si substrate. This higher defect density correlates with an increased device speed, but with reduced sensitivity.


2009 ◽  
Vol 24 (1) ◽  
pp. 237-244 ◽  
Author(s):  
Seung Hwan Jo ◽  
P. Muralidharan ◽  
Do Kyung Kim

Highly sinterable La10Si6O27 and La10Si5.5M0.5O27 (M = Mg, and Al) nanopowders with apatite-type structure have been synthesized via a homogeneous precipitation method using diethylamine (DEA) as a precipitant. The synthetic approach using an organic precipitant with dispersant characteristics is advantageous in configuring weakly agglomerated nanopowders, leading to desirable sintering activity. X-ray diffraction powder patterns confirmed the single-phase crystalline lanthanum silicate of hexagonal apatite structure at 800 °C, which is a relatively lower calcination temperature compared to conventionally prepared samples. Transmission electron microscopy images revealed particles ∼30 nm in size with a high degree of crystallinity. A dense grain morphology was recognized from the scanning electron microscopy images of the polished surface of the pellets that were sintered at 1400 and 1500 °C for 10 h. This low-temperature sintering is significant because conventional powder processing requires a temperature above 1700 °C to obtain the same dense electrolyte. The doped-lanthanum silicate electrolyte prepared by the DEA process and sintered at 1500 °C for 10 h exhibited electrical conductivity comparable with samples prepared at much higher sintering temperature (>1700 °C).


2019 ◽  
Vol 55 (27) ◽  
pp. 3876-3878 ◽  
Author(s):  
Eleonora Aneggi ◽  
Jordi Llorca ◽  
Alessandro Trovarelli ◽  
Mimoun Aouine ◽  
Philippe Vernoux

In situ environmental transmission electron microscopy discloses room temperature carbon soot oxidation by ceria–zirconia at the nanoscale.


2003 ◽  
Vol 18 (2) ◽  
pp. 475-481 ◽  
Author(s):  
Karfa Traoré ◽  
Philippe Blanchart

Kaolinite mixed with calcite was sintered at low temperature (1100 °C; 5 °C/min). The successive phase transformations are metakaolinite to gehlenite and then anorthite, although the available phase diagram indicates a direct anorthite recrystallization. Transmission electron microscopy and electron diffraction studies of nanocrystallites revealed that the transformation path is favored by the structural similarities of phases. In particular, the pseudolayers of gehlenite have a major orientation relationship with the initial metakaolinite layers. The gehlenite axis, [001]G, is parallel to the metakaolinite axis, [001]A. This direct transition is favored by the existence of Si tetrahedral units and 4–fold–coordinated Al in both structures. Ca atoms, initially in the interlayer spacing of metakaolinite, remain in the interlayers of gehlenite. During the second transformation step, anorthite recrystallizes from gehlenite with axis [020]A parallel to [210]G. It is proposed that this orientation relationship is favored by the orientation and shape of Ca-atom channels through both structures, along [001]G and [100]A axes.


1992 ◽  
Vol 263 ◽  
Author(s):  
Ting-Yen Chiang ◽  
En-Huery Liu ◽  
Der-Hwa Yiin ◽  
Tri-Rung Yew

ABSTRACTThis paper presents results of the low—temperature epitaxial growth of GaAs on Si substrates with orientation 1°—4° off (100) by molecular beam epitaxy (MBE). The epitaxial growth ·is carried out on Si wafers subjected to HF solution treatment by “spin-etch” technique before the wafer is transferred to the entry chamber of MBE system. Methods used for reducing defect density in the epitaxial layers are proposed. The characterization techniques include cross-sectional transmission electron microscopy (XTEM), plan-view transmission electron microscopy, scanning electron microscopy (S EM), and double crystal X-ray diffraction (DCXRD). Epitaxial films with a full width at half—maximum (FWHM) of about 310 arcsec measured by DCXRD are obtained without annealing.-


Sign in / Sign up

Export Citation Format

Share Document