A Dislocation Pile-Up Computation for Adiabatic Shear Banding

2014 ◽  
Vol 1650 ◽  
Author(s):  
Stephen D. Antolovich ◽  
Ronald W. Armstrong

ABSTRACTA model is presented for computing the temperature increase associated with the formation of an adiabatic shear band. The hypothesis is that the heating is supplied by the difference in energy of a pile-up of n dislocations and the energy of n individual dislocations. The heating is assumed to occur within a volume determined by the grain size (i.e. slip band length) and an effective thermal length determined by the dislocation velocity. The model predicts increases in temperature with increasing shear modulus (G), increasing numbers of piled up dislocations (n), increasing Burgers vector (b), increased grain size (d), and increased dislocation velocity (vd). Increasing temperature is also predicted with decreasing heat capacity (c*) and thermal diffusivity (α) as would be expected. The model was applied to low carbon steel for which considerable data are available. Application to low carbon steel gives a temperature increase of about 1400K. The implied result that untempered martensite should be observed after adiabatic shear banding is in agreement with examples cited in the literature. Further investigation into the dynamics of pile-up release and the associated heat transfer mechanisms is discussed.

Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 747 ◽  
Author(s):  
Farnoosh Forouzan ◽  
M. Guitar ◽  
Esa Vuorinen ◽  
Frank Mücklich

To improve the weld zone properties of Advanced High Strength Steel (AHSS), quenching and partitioning (Q&P) has been used immediately after laser welding of a low-carbon steel. However, the mechanical properties can be affected for several reasons: (i) The carbon content and amount of retained austenite, bainite, and fresh martensite; (ii) Precipitate size and distribution; (iii) Grain size. In this work, carbon movements during the partitioning stage and prediction of Ti (C, N), and MoC precipitation at different partitioning temperatures have been simulated by using Thermocalc, Dictra, and TC-PRISMA. Verification and comparison of the experimental results were performed by optical microscopy, X-ray diffraction (XRD), Scanning Electron Microscop (SEM), and Scanning Transmission Electron Microscopy (STEM), and Energy Dispersive Spectroscopy (EDS) and Electron Backscatter Scanning Diffraction (EBSD) analysis were used to investigate the effect of martensitic/bainitic packet size. Results show that the increase in the number density of small precipitates in the sample partitioned at 640 °C compensates for the increase in crystallographic packets size. The strength and ductility values are kept at a high level, but the impact toughness will decrease considerably.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1601
Author(s):  
Junhua Hou ◽  
Binbin He

The effect of the initial starting microstructures on the austenite reverse transformation kinetics is thoroughly studied in low-carbon steel. The different initial starting microstructures including the ferrite + pearlite, bainite, and martensite are obtained through varied forward transformation. It is found that the bainite phase demonstrates highest reverse transformation rate while the ferrite + pearlite shows the lowest transformation rate. The above observation can be explained through the different grain size of the initial starting microstructures as the grain boundaries could act as the nucleation sites for austenite reverse transformation. The explanation is further substantiated based on the consideration of the reverse transformation kinetics from the martensite microstructure with different grain size.


2010 ◽  
Vol 654-656 ◽  
pp. 11-16 ◽  
Author(s):  
Setsuo Takaki

Yielding of polycrystalline low carbon steel is characterized by a clear yield point followed by unstable Lüders deformation and such a yielding behavior is taken over to fine grained steel with the grain size of 1μm or less. Yield strength of ferritic steel is increased with grain refinement standing on the Hall-Petch relation. The following equation is realized up to 0.2μm grain size in the relation between yield strength y and grain size d: y [MPa]= 100+600×d[μm]-1/2. In low carbon steel, it might be concluded that the Hall-Petch coefficient (ky) is around 600MPa•μm1/2. However, the ky value of interstitial free steels is substantially small as 130-180MPa•μm1/2 and it can be greatly increased by a small amount of solute carbon less than 20ppm. It was also cleared that the disappearance of yield point by purifying is due to the decrease in the ky value. On the other hand, the ky value is changeable depending on heat treatment conditions such as cooling condition from an elevated temperature and aging treatment at 90°C. These results suggest the contribution of carbon segregation at grain boundary in terms of the change in the ky value. On the contrary, substitutional elements such as Cr and Si do not give large influence to the ky value in comparison with the effect by carbon.


Sign in / Sign up

Export Citation Format

Share Document