Characterization of Energy Absorption of Two Armor Grade Composites Arrangements Base on Aramid and Polypropylene

2014 ◽  
Vol 1611 ◽  
pp. 37-42
Author(s):  
R.A. Gamboa ◽  
J.G. Carrillo ◽  
R.H. Rafful ◽  
B.J. Dzul

ABSTRACTBallistic grade composite materials have shown several advantages in comparison with their individual constituents, such as increased ballistic limit and reduced posterior trauma. One configuration in particular that has demonstrated greater ballistic efficiency is the arrangement of independent laminates (IL). It presents an increase in energy absorption compared to its counterpart of consolidated laminates (CL). In this study, an analysis is carried out to determine the effect on the ballistic performance of IL and CL arrangements when they are subjected to biaxial prestress (BP). Results show how the ballistic advantage obtained in IL is nullified in comparison with CL, thus demonstrating the limitations of this arrangement for possible applications where the arrangement is subjected to normal impacts with BP.

2020 ◽  
Vol 978 ◽  
pp. 245-249
Author(s):  
Rajole Sangamesh ◽  
Hiremath Shivashankar ◽  
K.S. Ravishankar ◽  
S.M. Kulkarni

This article focuses on the Finite Element (FE) analysis of the ballistic performance of the polymer composites consisting of natural rubber (NR), glass-epoxy (GE) and glass-rubber-epoxy (GRE) sandwich of different thicknesses (3, 6 and 9 mm) under the impact of the conical nose projectile for a velocity variation of (180, 220 and 260 m / s). FE modeling was carried out in direction to forecast the energy absorption, ballistic limit velocity and failure damage mode of the target materail. The significant influence of thickness, interlayer and sandwiching effect was studied: the lowest ballistic limit was obtained for 3 mm thick GE. Energy absorption capacity of GRE sandwich was highest among the natural rubber and GE. In future, the work can be extended for the experimental validation purpose, so that these polymer composite materials could be utilized to defence sector for bullet-proofing.


2019 ◽  
Vol 89 (21-22) ◽  
pp. 4349-4362 ◽  
Author(s):  
J Naveen ◽  
M Jawaid ◽  
ES Zainudin ◽  
Mohamed TH Sultan ◽  
R Yahaya

This study investigated the effect of graphene nanoplatelets (GnPs) on the ballistic performance of Kevlar/ Cocos nucifera sheath-reinforced epoxy composites. GnPs with different wt. % (0%, 0.25%, 0.50%) were integrated into epoxy resin through ultra-sonication. Laminated composites were fabricated by incorporating Kevlar and Cocos nucifera sheath layers into the epoxy/GnP mixture by the hand lay-up method followed by hot pressing. Nine- and 12-layered laminates were fabricated with different numbers of Kevlar and Cocos nucifera sheath plies. Ballistic tests were conducted using a single-stage gas gun experimental setup with an 8 mm hemispherical stainless steel projectile. The results showed that the addition of GnPs improved the energy absorption by 8.5% (nine plies) and 12.88% (12 plies) and the ballistic limit by 4.28% (nine plies) and 6.17% (12 plies), respectively of Kevlar/epoxy/GnP composites at 0.25 wt. %. However, hybrid Kevlar/ Cocos nucifera sheath/epoxy/GnP composites and Cocos nucifera sheath/epoxy/GnP laminated composites decreased the energy absorption and ballistic limit after the addition of GnPs. This is because the addition of GnPs improved the interfacial interactions between the fiber and GnP modified epoxy matrix, which is inappropriate to absorb and dissipate the kinetic energy of the projectile. Statistical analysis was carried out using one-way analysis of variance and it was shown that there is a statistically significant difference between the obtained ballistic properties of the laminates.


Author(s):  
Mohammad Sohail ◽  
Sanaullah Khan ◽  
Shafiq ur Rahman ◽  
Bilal Ahmad ◽  
Adnan Adnan ◽  
...  

2021 ◽  
pp. 004051752110238
Author(s):  
Oluwafemi P Akinmolayan ◽  
James M Manimala

Silica nanoparticle-impregnated Kevlar (SNK) fabric has better specific ballistic performance in comparison to its neat counterparts. For multifunctional structural applications using lightweight composites, combining this improved ballistic functionality with an acoustic functionality is desirable. In this study, acoustic characterization of neat and SNK samples is conducted using the normal-incidence impedance tube method. Both the absorption coefficient and transmission loss (TL) are measured in the 60–6000 Hz frequency range. The influence of parameters such as number of layers of neat or treated fabric, percentage by weight of nanoparticle addition, spacing between fabric layers, and residual porosity is examined. It is found that while absorption decreases with an increase in nanoparticle addition for frequencies above about 2500 Hz, increasing the number of layers shifts peak absorption to lower frequencies. By introducing an air-gap behind the fabric layer, dominant low-frequency (1000–3000 Hz) absorption peaks are obtained that correlate well with natural modes of mass-equivalent thin plates. Examining the influence of residual porosity by laminating the SNK samples reveals that it contributes to about 30–50% of the total absorption. Above about 1500 Hz, 3–5 dB of TL increase is obtained for SNK samples vis-à-vis the neat samples. TL is found to increase beyond that of the neat sample above a threshold frequency when an air-gap is introduced between two SNK layers. With an increase in the weight of nanoparticle addition, measured TL tends to be closer to mass law predictions. This study demonstrates that SNK fabric could provide improved acoustic performance in addition to its ballistic capabilities, making it suitable for multifunctional applications and could form the basis for the development of simplified models to predict the structural acoustic response of such nanoparticle–fabric composites.


Sign in / Sign up

Export Citation Format

Share Document