Flexible Fibrous Piezo-Electric Sensor on Printed Silver Electrode

2014 ◽  
Vol 1685 ◽  
Author(s):  
Ho Yeon Son ◽  
Yoon Sung Nam ◽  
Woo Soo Kim

ABSTRACTHere we introduce a facile method to fabricate a flexible piezoelectric sensor using one-dimensional (1-D) piezoelectric poly(vinylidene fluoride) (PVDF) nanofibers directly produced onto flexible printed electrodes by electro-spinning without an additional poling process. The flexible silver electrodes are fabricated on polyethylene terephthalate (PET) using silver nanowires by easy and cost-effective spraying deposition. The electrospun PVDF nanofibers have uniaxially aligned arrays on the electrodes by using a rotating collector. The fabricated PVDF piezoelectric sensors demonstrate the piezoelectric responses with repeated mechanical stimuli with good flexibility and high sensitivity. We expect that the facile fabrication of PVDF piezoelectric sensors on flexible printed electrodes can be usefully exploited to integrate the piezoelectric sensors into flexible and stretchable functional electronic devices.

2018 ◽  
Vol 4 (2) ◽  
pp. 1800438 ◽  
Author(s):  
Lingling Zhang ◽  
Yuan Wang ◽  
Jinzheng Gui ◽  
Xuening Wang ◽  
Rui Li ◽  
...  

2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Hyunho Choi ◽  
Kyungjun Lee ◽  
John Reeks ◽  
Hong Liang

The ability to design, control, and synthesize a material surface with superhydrophobicity is of great interests in many engineering applications. Here, we report a cost-effective process to fabricate poly(vinylidene fluoride) (PVDF)/zirconium(IV) oxide (ZrO2) composites with superhydrophobicity. This is achieved by combining an antisolvent that induces phase separation, i.e., the precipitation of PVDF from the solution through a spray-on method on various liquids. The material surfaces possess wrinkled micron-sized beads which displayed superhydrophobicity in water without any chemical treatment. The process developed in this research presented a fast and simple approach in making hydrophobic surfaces.


2018 ◽  
Vol 6 (16) ◽  
pp. 7014-7020 ◽  
Author(s):  
Jindan Wu ◽  
Yajie Ding ◽  
Jianqiang Wang ◽  
Tiantian Li ◽  
Haibo Lin ◽  
...  

A superhydrophobic, superoleophilic and under oil superhydrophobic poly (vinylidene fluoride) (PVDF) nanofibrous membrane was developed through a facile electrospinning strategy.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hossein Cheraghi Bidsorkhi ◽  
Alessandro Giuseppe D’Aloia ◽  
Alessio Tamburrano ◽  
Giovanni De Bellis ◽  
Andrea Delfini ◽  
...  

Abstract Lightweight multifunctional electromagnetic (EM) absorbing materials with outstanding thermal properties, chemical resistance and mechanical stability are crucial for space, aerospace and electronic devices and packaging. Therefore, 3D porous graphene aerogels are attracting ever growing interest. In this paper we present a cost effective lightweight 3D porous graphene-based aerogel for EM wave absorption, constituted by a poly vinylidene fluoride (PVDF) polymer matrix filled with graphene nanoplatelets (GNPs) and we show that the thermal, electrical, mechanical properties of the aerogel can be tuned through the proper selection of the processing temperature, controlled either at 65 °C or 85 °C. The produced GNP-filled aerogels are characterized by exceptional EM properties, allowing the production of absorbers with 9.2 GHz and 6.4 GHz qualified bandwidths with reflection coefficients below −10 dB and −20 dB, respectively. Moreover, such aerogels show exceptional thermal conductivities without any appreciable volume change after temperature variations. Finally, depending on the process parameters, it is shown the possibility to obtain water repellent aerogel composites, thus preventing their EM and thermal properties from being affected by environmental humidity and allowing the realization of EM absorber with a stable response.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 442
Author(s):  
Kyobin Keum ◽  
Jae Sang Heo ◽  
Jimi Eom ◽  
Keon Woo Lee ◽  
Sung Kyu Park ◽  
...  

Textile-based pressure sensors have garnered considerable interest in electronic textiles due to their diverse applications, including human–machine interface and healthcare monitoring systems. We studied a textile-based capacitive pressure sensor array using a poly(vinylidene fluoride)-co-hexafluoropropylene (PVDF-HFP)/ionic liquid (IL) composite film. By constructing a capacitor structure with Ag-plated conductive fiber electrodes that are embedded in fabrics, a capacitive pressure sensor showing high sensitivity, good operation stability, and a wide sensing range could be created. By optimizing the PVDF-HFP:IL ratio (6.5:3.5), the fabricated textile pressure sensors showed sensitivity of 9.51 kPa−1 and 0.69 kPa−1 in the pressure ranges of 0–20 kPa and 20–100 kPa, respectively. The pressure-dependent capacitance variation in our device was explained based on the change in the contact-area formed between the multi-filament fiber electrodes and the PVDF-HFP/IL film. To demonstrate the applicability and scalability of the sensor device, a 3 × 3 pressure sensor array was fabricated. Due to its matrix-type array structure and capacitive sensing mechanism, multi-point detection was possible, and the different positions and the weights of the objects could be identified.


RSC Advances ◽  
2019 ◽  
Vol 9 (22) ◽  
pp. 12585-12589 ◽  
Author(s):  
Fa-Heng Zhang ◽  
Rui-Xue Jiang ◽  
Wei Cao ◽  
Bin Du ◽  
Ding-Yuan Cao ◽  
...  

Anisotropic fluorescent nanofibers constructed from the self-assembled perylene bisimide derivative and poly(vinylidene fluoride) show high sensitivity and short response time to aniline vapor.


2019 ◽  
Author(s):  
Chris Bowen

Ferroelectrets are piezoelectrically-active polymer foams that can convert externally applied loads into electric charge for sensor or energy harvesting applications. Existing processing routes used to create pores of the desired geometry and degree of alignment appropriate for ferroelectrets are based on complex mechanical stretching and chemical dissolution steps. In this work, we present the first demonstration of the use of freeze casting as a cost effective and environmentally friendly approach to produce polymeric ferroelectrets. The pore morphology, phase analysis, relative permittivity and direct piezoelectric charge coefficient (d33) of porous poly(vinylidene fluoride) (PVDF) based ferroelectrets with porosity volume fractions ranging from 24% to 78% were analysed. The long-range alignment of pore channels produced during directional freezing is shown to be beneficial in forming a highly polarised structure and high d33 ∼ 264 pC N−1 after breakdown of air within the pore channels during corona poling. This new approach opens a way to create tailored pore structures and voids in ferroelectret materials for transducer applications related to sensors and vibration energy harvesting.


Sign in / Sign up

Export Citation Format

Share Document