I-V Characteristic and Performance of Three Electrode Alkaline Electrolyzer

Author(s):  
Diwakar Kafle ◽  
Sushil Dumre ◽  
Saroj Tripathi ◽  
Shankar Shrestha

Abstract Hydrogen production by electrolysis of water is seen as a promising technique as it is environment friendly and it can use renewable energy source for the production of hydrogen gas. However, this technology has less than 4% contribution to the production of commercial hydrogen in the market. This is due to the high electricity consumption of the water splitting reaction. The main challenge to make this technology efficient and economically viable is to develop cost effective and highly efficient electrolyzer. Here we have developed a three electrode electrolyzer in which an extra electrode is inserted between conventional electrodes: cathode and anode. This novel electrolyzer utilizes an extra voltage source which reduces the overpotential and increases the anode current of the cell, which is responsible for the hydrogen production. Furthermore, we observed that, the operating resistance of the cell decreases under the application of the new voltage source. Our results demonstrate that the introduction of third electrode improves the performance of electrolysis by consuming less power as compared to the traditional or conventional two electrode electrolyzer system.

Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 891
Author(s):  
Ken-ichi Fujita ◽  
Takayoshi Inoue ◽  
Toshiki Tanaka ◽  
Jaeyoung Jeong ◽  
Shohichi Furukawa ◽  
...  

A new catalytic system has been developed for hydrogen production from various monosaccharides, mainly glucose, as a starting material under reflux conditions in water in the presence of a water-soluble dicationic iridium complex bearing a functional bipyridine ligand. For example, the reaction of D-glucose in water under reflux for 20 h in the presence of [Cp*Ir(6,6′-dihydroxy-2,2′-bipyridine)(H2O)][OTf]2 (1.0 mol %) (Cp*: pentamethylcyclopentadienyl, OTf: trifluoromethanesulfonate) resulted in the production of hydrogen gas in 95% yield. In the present catalytic reaction, it was experimentally suggested that dehydrogenation of the alcoholic moiety at 1-position of glucose proceeded.


2015 ◽  
Vol 1756 ◽  
Author(s):  
Priya Vashishta ◽  
Rajiv K. Kalia ◽  
Aiichiro Nakano ◽  
Ying Li ◽  
Ken-ichi Nomura ◽  
...  

ABSTRACTMultimillion-atom reactive molecular dynamics (RMD) and large quantum molecular dynamics (QMD) simulations are used to investigate structural and dynamical correlations under highly nonequilibrium conditions and reactive processes in nanostructured materials under extreme conditions. This paper discusses four simulations:1.RMD simulations of heated aluminum nanoparticles have been performed to study the fast oxidation reaction processes of the core (aluminum)-shell (alumina) nanoparticles and small complexes.2.Cavitation bubbles readily occur in fluids subjected to rapid changes in pressure. We have used billion-atom RMD simulations on a 163,840-processor Blue Gene/P supercomputer to investigate chemical and mechanical damages caused by shock-induced collapse of nanobubbles in water near silica surface. Collapse of an empty nanobubble generates high-speed nanojet, resulting in the formation of a pit on the surface. The gas-filled bubbles undergo partial collapse and consequently the damage on the silica surface is mitigated.3.Our QMD simulation reveals rapid hydrogen production from water by an Al superatom. We have found a low activation-barrier mechanism, in which a pair of Lewis acid and base sites on the Aln surface preferentially catalyzes hydrogen production.4.We have introduced an extension of the divide-and-conquer (DC) algorithmic paradigm called divide-conquer-recombine (DCR) to perform large QMD simulations on massively parallel supercomputers, in which interatomic forces are computed quantum mechanically in the framework of density functional theory (DFT). A benchmark test on an IBM Blue Gene/Q computer exhibits an isogranular parallel efficiency of 0.984 on 786,432 cores for a 50.3 million-atom SiC system. As a test of production runs, LDC-DFT-based QMD simulation involving 16,661 atoms was performed on the Blue Gene/Q to study on-demand production of hydrogen gas from water using LiAl alloy particles.


Materials ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 210 ◽  
Author(s):  
Dohun Kim ◽  
Dong-Kyu Lee ◽  
Seong Min Kim ◽  
Woosung Park ◽  
Uk Sim

In the development of hydrogen-based technology, a key challenge is the sustainable production of hydrogen in terms of energy consumption and environmental aspects. However, existing methods mainly rely on fossil fuels due to their cost efficiency, and as such, it is difficult to be completely independent of carbon-based technology. Electrochemical hydrogen production is essential, since it has shown the successful generation of hydrogen gas of high purity. Similarly, the photoelectrochemical (PEC) method is also appealing, as this method exhibits highly active and stable water splitting with the help of solar energy. In this article, we review recent developments in PEC water splitting, particularly those using metal-organic halide perovskite materials. We discuss the exceptional optical and electrical characteristics which often dictate PEC performance. We further extend our discussion to the material limit of perovskite under a hydrogen production environment, i.e., that PEC reactions often degrade the contact between the electrode and the electrolyte. Finally, we introduce recent improvements in the stability of a perovskite-based PEC device.


2006 ◽  
Vol 128 (3) ◽  
pp. 326-330 ◽  
Author(s):  
N. Muradov ◽  
A. T-Raissi

The near-term and cost-effective production of solar hydrogen from inexpensive and readily available hydrogen containing compounds (HCCs) can boost the prospects of future hydrogen economy. In this paper, we assess the prospects of the solar-assisted conversion of HCCs into hydrogen using polyoxometalate (POM) based photocatalysts, such as isopolytungstates (IPT) and silicotungstic acid (STA). Upon exposure to solar photons, IPT aqueous solutions containing various HCCs (e.g., alcohols, alkanes, organic acids, sugars, etc.) produce hydrogen gas and corresponding oxygenated compounds. The presence of small amounts of colloidal platinum increases the rate of hydrogen evolution by one order of magnitude. A solar photocatalytic flat-bed reactor, approximately 1.2m×1.2m in size, was fabricated and tested for the production of hydrogen from water-alcohol solutions containing IPT and STA and small amounts of colloidal Pt. The solar photoreactor tests demonstrated steady-state production of hydrogen gas for several days. IPT immobilized on granules of anion exchange resins with quaternary ammonium active groups show good photocatalytic activity for hydrogen production from water-alcohol solutions exposed to near-UV or solar radiation.


2020 ◽  
Vol 853 ◽  
pp. 228-234
Author(s):  
Seng Tat Lim ◽  
Sumathi Sethupathi ◽  
Abdulkareem Ghassan Alsultan ◽  
Loong Kong Leong ◽  
Yun Hin Taufiq-Yap

Fossil fuels dependencies need to be stopped to safeguard the earth from further damage. This study focuses on the production of hydrogen (H2) gas using waste aluminum (Al) cans. Al waste cans were fed into disintegrator to produce fine powder. The hydrolysis performance of disintegrated powdered Al cans were compared with the commercial Al powder. The effect of different reaction temperatures (25 - 100°C); type of alkalis (NaOH, KOH and Ba (OH)2); and type of water sources (tap, deionized, ultrapure and distilled) for the hydrolysis process were analyzed. The Al powders were also characterized using different techniques to understand its behavior. It was found that powdered Al waste cans produced more H2 compared to commercial Al reported in the literature. The higher the reaction temperature, the higher the rate of H2 production. Deionized water maximizes the production of H2 compared to other types of water. Ba (OH)2 was found to be an unproductive alkaline for H2 production using powdered Al waste cans. The successful hydrolysis of powdered Al waste can in alkaline condition in this research has demonstrated as a cost-effective, clean and green alternative hydrogen production method.


2013 ◽  
Vol 59 (2) ◽  
pp. 59-78 ◽  
Author(s):  
Yogesh Goyal ◽  
Manish Kumar ◽  
Kalyan Gayen

Hydrogen gas exhibits potential as a sustainable fuel for the future. Therefore, many attempts have been made with the aim of producing high yields of hydrogen gas through renewable biological routes. Engineering of strains to enhance the production of hydrogen gas has been an active area of research for the past 2 decades. This includes overexpression of hydrogen-producing genes (native and heterologous), knockout of competitive pathways, creation of a new productive pathway, and creation of dual systems. Interestingly, genetic mutations in 2 different strains of the same species may not yield similar results. Similarly, 2 different studies on hydrogen productivities may differ largely for the same mutation and on the same species. Consequently, here we analyzed the effect of various genetic modifications on several species, considering a wide range of published data on hydrogen biosynthesis. This article includes a comprehensive metabolic engineering analysis of hydrogen-producing organisms, namely Escherichia coli, Clostridium, and Enterobacter species, and in addition, a short discussion on thermophilic and halophilic organisms. Also, apart from single-culture utilization, dual systems of various organisms and associated developments have been discussed, which are considered potential future targets for economical hydrogen production. Additionally, an indirect contribution towards hydrogen production has been reviewed for associated species.


Solar Energy ◽  
2005 ◽  
Author(s):  
Nazim Z. Muradov ◽  
Ali T-Raissi

Near-term and cost-effective production of solar hydrogen from inexpensive and readily available hydrogen containing compounds (HCCs) can boost the prospects of future hydrogen economy. In this paper, we assess the prospects of solar-assisted conversion of HCCs into hydrogen using polyoxometalate (POM) based photocatalysts, such as isopolytunstates (IPT) and silicotungstic acid (STA). Upon exposure to solar photons, IPT aqueous solutions containing various HCCs (e.g. alcohols, alkanes, organic acids, sugars, etc.) produce hydrogen gas and corresponding oxygenated compounds. The presence of small amounts of colloidal platinum increases the rate of hydrogen evolution by one order of magnitude. A solar photocatalytic flat-bed reactor, approximately 1.2 m × 1.2 m in size, was fabricated and tested for production of hydrogen from water-alcohol solutions containing IPT and STA and small amounts of colloidal Pt. The solar photoreactor tests demonstrated steady-state production of hydrogen gas for several days. IPT immobilized on granules of anion exchange resins with quaternary ammonium active groups show good photocatalytic activity for hydrogen production from water-alcohol solutions exposed to near-UV or solar radiation.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1091
Author(s):  
Farheen F. Jaldurgam ◽  
Zubair Ahmad ◽  
Farid Touati

Thermoelectricity is a promising technology that directly converts heat energy into electricity and finds its use in enormous applications. This technology can be used for waste heat recovery from automobile exhausts and industrial sectors and convert the heat from solar energy, especially in hot and humid areas such as Qatar. The large-scale, cost-effective commercialization of thermoelectric generators requires the processing and fabrication of nanostructured materials with quick, easy, and inexpensive techniques. Moreover, the methods should be replicable and reproducible, along with stability in terms of electrical, thermal, and mechanical properties of the TE material. This report summarizes and compares the up-to-date technologies available for batch production of the earth-abundant and ecofriendly materials along with some notorious works in this domain. We have also evaluated and assessed the pros and cons of each technique and its effect on the properties of the materials. The simplicity, time, and cost of each synthesis technique have also been discussed and compared with the conventional methods.


2012 ◽  
Vol 550-553 ◽  
pp. 569-573
Author(s):  
Xiao Fang Yue ◽  
Hong Yuan Sun ◽  
Xu Xin Zhao ◽  
Li Qing Zhao

Hydrogen is a valuable gas as a clean energy source and as feedstock for some industries. Therefore, demand on hydrogen production has increased considerably in recent years. Food waste is an important part of urban living garbage,which is full of organic matter and easy to be degraded. So, biological production of hydrogen gas from food waste fermentation has significant advantages for providing inexpensive and clean energy generation to help meet the needs of carbon emission reduction with simultaneous waste treatment. This article reviews the following aspects: mechanism of fermentative hydrogen production by bacteria, and factors influencing fermentative bio-hydrogen production. In addition,the challenges and prospects of bio- hydrogen production are also reviewed.


Author(s):  
William L. Becker ◽  
Robert J. Braun ◽  
Michael Penev

SOFC systems with co-generation exhibit high overall efficiency. Fuel cell-based co-generation studies have typically focused on electricity and heat; pure hydrogen gas can also be generated in these systems as an energy co-product resulting in the combined production of heat, hydrogen, and power (CHHP). Co-locating a distributed generation SOFC CHHP plant with fueling stations for fuel cell vehicles enables use of lower scale (200 kg/day) hydrogen production and leverages the capital investment among all co-products, thereby lowering the unit cost of hydrogen and offering a potentially promising transition pathway to a hydrogen economy. This work focuses on the design and performance estimation of a methane-fueled 1 MW SOFC CHHP system operating at steady-state. System design and modeling are carried out employing Aspen Plus™ software where performance characteristics of the SOFC and the balance-of-plant are estimated from industry and literature sources. Analysis of the SOFC CHHP system indicates that the SOFC electrochemical performance is independent of the heat recovery and hydrogen production processes because the latter two subsystems are downstream of the SOFC power module. The system is configured such that it can preferentially produce hydrogen or low-temperature thermal energy (80 °C) as needed. Two methods of hydrogen purification and recovery from the SOFC tail-gas were analyzed: pressure swing adsorption (PSA) and electrochemical hydrogen separation (EHS). The recovered hydrogen is compressed to 425 bar for storage. The SOFC electrical efficiency at rated power is estimated at 48.1% (LHV) and the overall CHHP efficiency is 84.4% (LHV) for the EHS design concept. The amount of hydrogen recovery (85–90%) with EHS is higher than PSA for typical SOFC effluent gas compositions. The hydrogen separation energy requirement of 2.7 kWh/kg H2 for EHS is found to be about three times lower than PSA in this system. Increasing the amount of hydrogen production can be independently controlled by flowing excess methane into the system, effectively decreasing SOFC fuel utilization yet still reforming the fuel to a hydrogen-rich syngas. A case study for hydrogen overproduction is given. Operating the system to produce excess hydrogen increases the efficiency for both hydrogen separation design concepts.


Sign in / Sign up

Export Citation Format

Share Document