SAXS and in-situ SAXS to follow the structural evolution in hybrid materials

2015 ◽  
Vol 1754 ◽  
pp. 3-11 ◽  
Author(s):  
Silvia Pabisch ◽  
Harald Rennhofer ◽  
Nicola Hüsing ◽  
Herwig Peterlik

ABSTRACTThe paper focuses on the evolution of oriented nanostructures: An orientation in real space leads to scattering intensities with a preferred orientation with respect to the azimuthal angle in reciprocal space. Thus, the macroscopic orientation of nanostructures can be obtained from SAXS patterns. The additional advantage of in-situ SAXS is that one can directly follow the development of orientated nanostructures during thermal treatment, under extreme conditions or during processing. This is shown in the following for an orientational change of pores in two very different systems, the first being the formation of pores within carbon fibers during loading at high temperatures up to 2000 °C and the second is the development of macroscopically aligned pores in mesostructured silica in the sol-gel process during shear.

1998 ◽  
Vol 519 ◽  
Author(s):  
Y. Yan ◽  
Z. Duan ◽  
D.-G. Chen ◽  
S. Ray Chaudhuri

AbstractThe insoluble, strongly hydrogen bonded organic pigment of 3,6-bis-(4-chlorphenyl)-l,4- diketopyrrolo [3,4-c] pyrrole was transiently blocked by adding carbamate groups, and consequently incorporated into organic-inorganic hybrid matrices by a sol-gel process. The homo- (pigment-pigment) and hetero-intermolecular (pigment-matrix) interactions were found to control both the assembly and dispersion of pigment molecules in the hybrid coating films. A weaker interaction between matrices and pigment molecules results in aggregation of the carbamate pigment in the methyl-silicate films. A stronger interaction forms a homogenous dispersion and coloration of the phenyl-silicate films. The as-prepared methyl- and phenylsilicate films doped with the organic pigment were distinguished by a morphology change and a blue (hypsochromic) shift in absorption from 550 to 460 nm. Thermal treatment can remove the carbamate groups and in-situ form the organic pigment in the hybrid films.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2229 ◽  
Author(s):  
Flora Somidin ◽  
Hiroshi Maeno ◽  
Xuan Tran ◽  
Stuart D. McDonald ◽  
Mohd Mohd Salleh ◽  
...  

In-situ observations of the polymorphic transformation in a single targeted Cu6Sn5 grain constrained between Sn-0.7 wt % Cu solder and Cu-Cu3Sn phases and the associated structural evolution during a solid-state thermal cycle were achieved via a high-voltage transmission electron microscope (HV-TEM) technique. Here, we show that the monoclinic η′-Cu6Sn5 superlattice reflections appear in the hexagonal η-Cu6Sn5 diffraction pattern upon cooling to isothermal 140 °C from 210 °C. The in-situ real space imaging shows that the η′-Cu6Sn5 contrast pattern is initiated at the grain boundary. This method demonstrates a new approach for further understanding the polymorphic transformation behavior on a real solder joint.


2018 ◽  
Vol 24 (9) ◽  
pp. 1421-1427 ◽  
Author(s):  
Feng Liu ◽  
Shaoai Xie ◽  
Yan Wang ◽  
Jianjun Yu ◽  
Qinghua Meng

PurposeThe titania (titanium dioxide) is one of the important functional additives in the photosensitive resin and encounters the problem of stabilization in the photosensitive resin for 3D printing. This study aims to achieve enhancement in stabilization by preparation of the polymerizable titania andin situlaser-induced crystallization during 3D printing.Design/methodology/approachA type of polymerizable titania (AAEM@TiO2) was designed and prepared from tetrabutyl titanate (TBT) and 2-(acetoacetoxy)ethyl methacrylate (AAEM) via the sol–gel process, which was characterized by Fourier-transform infrared (FTIR) spectra, ultraviolet–visible (UV-Vis) spectra, surface bonding efficiency (SBE) and settling height (H). AAEM acted on both bonding to the titania and polymerization with the monomer in resin for stabilization. The polymerizable titania could be converted to the pigmented titania by means of laser-induced crystallization. The photosensitive resin was then formulated on the basis of optimization and used in a stereolithography apparatus (SLA) for 3D printing.FindingsThe stabilization effect of AAEM on TiO2was achieved and the mechanism of competition in the light-consuming reactions during photocuring was proposed. The ratio of nAAEM/nTBTin AAEM@TiO2, the concentration of AAEM@TiO2and photoinitiator (PI) used in the photosensitive resin were optimized. The anatase crystal form was indicated by X-ray diffraction (XRD) and clustering of nanocrystals was revealed by scanning electron microscopy (SEM) after SLA 3D printing.Originality/valueThis investigation provides a novel method of pigmentation by preparation of the polymerizable titania andin situlaser-induced crystallization for SLA 3D printing.


2011 ◽  
Vol 122 (3) ◽  
pp. 1792-1799 ◽  
Author(s):  
Federica Bondioli ◽  
Maria Elena Darecchio ◽  
Adrian S. Luyt ◽  
Massimo Messori

2020 ◽  
Vol 22 ◽  
pp. 100728
Author(s):  
Minoj Gnanaseelan ◽  
Uddhab Kalita ◽  
Andreas Janke ◽  
Jürgen Pionteck ◽  
Brigitte Voit ◽  
...  

1997 ◽  
Vol 12 (4) ◽  
pp. 1131-1140 ◽  
Author(s):  
Kui Yao ◽  
Weiguang Zhu ◽  
Liangying Zhang ◽  
Xi Yao

Several ABO3perovskite ferroelectric crystals, PbTiO3, Pb(Zr, Ti)O3, and BaTiO3have beenin situgrown from amorphous gels with glass elements, and the structural evolution has been systematically investigated using x-ray diffraction (XRD), infrared spectra (IR), differential thermal analysis (DTA), thermogravimetric analysis (TGA), and dielectric measurements. It is found that in the Si-contained glass-ceramic systems, Si and B glass elements are incorporated into the crystalline structures, resulting in the variation of the crystallization process, change of lattice constant, and dielectric properties. Some metastable phases expressed by a general formula AxByGzOw(A = Pb and Ba; B = Zr and Ti; G for glass elements, especially for Si) have been observed and discussed.


2009 ◽  
Vol 52 (2) ◽  
pp. 219-227 ◽  
Author(s):  
Benjawan Chaichua ◽  
Pattarapan Prasassarakich ◽  
Sirilux Poompradub

Sign in / Sign up

Export Citation Format

Share Document