Flexible a-Si:H-based Image Sensors Fabricated by Digital Lithography

2007 ◽  
Vol 989 ◽  
Author(s):  
William S. Wong ◽  
TseNga Ng ◽  
Michael L. Chabinyc ◽  
Rene A. Lujan ◽  
Raj B. Apte ◽  
...  

AbstractAmorphous silicon-based x-ray image sensor arrays were fabricated on poly-ethylene naphthalate substrates at process temperatures below 180°C. Patterning of the thin-film transistor backplane was accomplished using ink-jet printed etch masks. The sensor devices were found to be comparable to high-temperature processed devices. The integration of the sensor stack, TFT array and PEN substrate resulted in a flexible x-ray image sensor with 180×180 pixels with 75 dpi resolution.

1997 ◽  
Vol 467 ◽  
Author(s):  
M J Powell ◽  
C Glasse ◽  
I D French ◽  
A R Franklin ◽  
J R Hughes ◽  
...  

ABSTRACTWe have developed a new amorphous silicon image sensor technology using a matrix array of amorphous silicon thin film transistors and photodiodes, where the amorphous silicon nip photodiode is fabricated on top of a thick insulating layer, on top of the thin film transistor array. We call this ‘diode on top’ technology or DOTTY. The active diode area can be as high as 93%, compared to 50% for our conventional photodiode-TFT technology. This leads to a higher signal to noise performance, which is important for medical X-ray applications.


RSC Advances ◽  
2019 ◽  
Vol 9 (36) ◽  
pp. 20865-20870 ◽  
Author(s):  
Dong-Gyu Kim ◽  
Jong-Un Kim ◽  
Jun-Sun Lee ◽  
Kwon-Shik Park ◽  
Youn-Gyoung Chang ◽  
...  

We studied the effect of X-ray irradiation on the negative threshold voltage shift of bottom-gate a-IGZO TFT. Based on spectroscopic analyses, we found that this behavior was caused by hydrogen incorporation and oxygen vacancy ionization.


1968 ◽  
Vol 15 (4) ◽  
pp. 215-219 ◽  
Author(s):  
G. Sadasiv ◽  
P.K. Weimer ◽  
W.S. Pike
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document