Interpretation of Time-of-Flight Distributions Resulting from Pulsed Laser-Induced Desorption

1988 ◽  
Vol 100 ◽  
Author(s):  
M. Buck ◽  
P. Hess

ABSTRACTTime-of-flight (TOF) experiments were performed to study the desorption of trans-l,2-dichlorocyclohexane molecules from molecular films condensed on a quartz-crystal microbalance at 77 K. The wavelength dependence of the desorption signal was investigated by resonant excitation of the internal vibrational mode of the molecule in the 10 μm region with a pulsed line-tunable TEA CO2 laser. The TOF temperatures showed the same spectral dependence as the optical absorption coefficient. The TOF distributions were narrower than Maxwellian distributions for multilayer desorption yields and approached Maxwellian distributions for submonolayer desorption yields. A saturation behavior was found at high laser intensities, indicating that the kinetic energy of the desorbing molecules is limited to a maximum value.

2013 ◽  
Vol 543 ◽  
pp. 30-34 ◽  
Author(s):  
Aljona Ramonova ◽  
Tengiz Butkhuzi ◽  
Viktorija Abaeva ◽  
I.V. Tvauri ◽  
Soslan Khubezhov ◽  
...  

Laser-induced fragmentation and desorption of fragments of PTCDA films vacuum-deposited on GaAs (100) substrate has been studied by time-of-flight (TOF) mass spectroscopy. The main effect caused by pulsed laser light irradiation (pulse duration: 10 ns, photon energy: 2.34 eV and laser fluence ranging from 0.5 to 7 mJ/cm2) is PTCDA molecular fragmentation and desorption of the fragments formed, whereas no desorption of intact PTCDA molecule was detected. Fragments formed are perylene core C20H8, its half C10H4, carbon dioxide, carbon monoxide and atomic oxygen. All desorbing fragments have essentially different kinetic energy. The mechanism of photoinduced molecular fragmentation and desorption is discussed.


2009 ◽  
Vol 1210 ◽  
Author(s):  
Javier Olea Ariza ◽  
David Pastor ◽  
María Toledano-Luque ◽  
Ignacio Mártil ◽  
Germán González-Díaz ◽  
...  

AbstractWe have studied the Pulsed-Laser Melting (PLM) effects on Ti implanted GaP to form an Intermediate Band (IB). Structural analysis has been carried out by means of Time of Flight Secondary Ion Mass Spectroscopy (ToF-SIMS), Raman spectroscopy and Glancing Incidence X-Ray Diffraction (GIXRD). After the PLM annealing, Ti concentration is over the Mott limit. Nevertheless, the Raman spectra show a forbidden TO vibrational mode of GaP. This result suggests the formation of crystalline domains with a different orientation in the annealed region regarding to the GaP unannealed substrate. This conclusion has been corroborated by GIXRD measurements. As a result of the polycrystalline lattice, a drop of the mobility is produced.


2011 ◽  
Vol 11 (3) ◽  
pp. 7291-7319 ◽  
Author(s):  
H. Jethva ◽  
O. Torres

Abstract. We provide satellite-based evidence of the spectral dependence of absorption in biomass burning aerosols over South America using near-UV measurements made by Ozone Monitoring Instrument (OMI) during 2005–2007. Currently, OMAERUV aerosol algorithm characterizes carbonaceous aerosol as "gray" aerosol, meaning no wavelength dependence in aerosol absorption. With this assumption, OMI-derived aerosol optical depth (AOD) is found to be over-estimated significantly compared to that of AERONET at several sites during intense biomass burning events (August–September). The assumption on height of aerosols and other parameters seem to be reasonable and unable to explain large discrepancy in the retrieval. The specific ground-based studies have revealed strong spectral dependence in aerosol absorption in the near-UV region that indicates the presence of organic carbon. A new set of OMI aerosol retrieval with assumed wavelength-dependent aerosol absorption in the near-UV region (Absorption Angstrom Exponent λ−2.5 to −3.0) provided much improved retrieval of AOD with significantly reduced bias. Also, the new retrieval of single-scattering albedo is in better agreement with those of AERONET within the uncertainties (Δω=±0.03). The new smoke aerosol model was also found to be valid over the biomass burning region of central Africa and northern India. Together with suggesting vast improvement in the retrieval of aerosol properties from OMI, present study demonstrates the near-UV capabilities of OMI in separating aerosols containing organics from pure black carbon through OMI-AERONET integrated measurements.


Sign in / Sign up

Export Citation Format

Share Document