Fabrication of Fluorescent Cellular Probes: Hybrid Dendrimer/Gold Nanoclusters

2007 ◽  
Vol 1007 ◽  
Author(s):  
Chang Zhong ◽  
Yuping Bao ◽  
Dung M. Vu ◽  
R. Brian Dyer ◽  
Jennifer S. Martinez

ABSTRACTFluorescent metal nanoclusters, which consist of collections of small numbers of noble metal atoms, are of great interest in photochemistry and photophysics due to their strong size-dependent emission. Historically their generation was confined to gaseous and solid phases; however, recently a unique organic/inorganic hybrid materials approach was developed that utilizes dendrimers as templates to protect nanoclusters from solution based fluorescence quenching. These hybrid dendrimer/gold nanoclusters are water-soluble and highly fluorescent. Yet there are several intrinsic deficiencies in their synthetic method: first, NaBH4, a toxic chemical, was used as reducing agent in the reaction; and second, the reaction yield was low due to the concurrent formation of large, non-emissive, gold particles. Here we report a particle-free method to produce dendrimer-encapsulated gold nanoclusters in high-yield. Proof of concept is demonstrated using OH-terminated poly(amidoamine) dendrimer and Au(PX3)3Cl (X = Ph, Me), but the approach can also be extended to the combination of other dendrimers and organic noble metal salts. Our approach yields fluorescent clusters with homogeneous size distribution. These clusters can be transferred to aqueous solution and used directly for biological applications.

2015 ◽  
Vol 2015 ◽  
pp. 1-23 ◽  
Author(s):  
Xiaochao Qu ◽  
Yichen Li ◽  
Lei Li ◽  
Yanran Wang ◽  
Jingning Liang ◽  
...  

Fluorescent gold nanoclusters (AuNCs) have been extensively studied due to their unique construction and distinctive properties, which place them between single metal atoms and larger nanoparticles. The dimension of AuNCs is comparable to the Fermi wavelength of electrons, which lead to size-dependent fluorescence and other molecule-like properties. In this review, we summarize various synthesis strategies of fluorescent AuNCs and recent advances of biological applications such as biosensing, biolabeling, and bioimaging. The synthetic methods are considered as two routes: “Atoms to Clusters” and “Nanoparticles to Clusters.” The surface functionalization of AuNCs is described as the precondition for making future bioapplications possible, which can eventually influence their stability, biocompatibility, and other properties. And then we focus on the recent advances of AuNCs-based applications in biological sensing, biolabeling, and bioimaging and finally discuss the current challenges of AuNCs in controllable synthesis and biological application.


2018 ◽  
Vol 3 (11) ◽  
Author(s):  
Nirmal Kumar Das ◽  
Saptarshi Mukherjee

Abstract Noble metal nanoclusters (NCs) are a new class of nanomaterials which are considered being a missing link between isolated metal atoms and metal nanoparticles (NPs). The sizes of the NCs are comparable to the Fermi wavelength of the conduction electrons, and this renders them to be luminescent in nature. They exhibit size-dependent fluorescence properties spanning almost the entire breath of the visible spectrum. Among all the noble metal NCs being explored, copper NCs (CuNCs) are the most rarely investigated primarily because of their propensity of getting oxidised. In this chapter, we have given a comprehensive understanding as to why these NCs are luminescent in nature. We have also given a detailed overview regarding the various templates used for the synthesis of these CuNCs along with the respective protocols being followed. The various instrumental techniques used to characterize these CuNCs are discussed which provides an in-depth understanding as to how these CuNCs can be properly examined. Finally, we have highlighted some of the most recent applications of these CuNCs which make them unique to serve as the next-generation fluorophores. Graphical Abstract: The Graphical Abstract highlights some of the key spectroscopic signatures of the CuNCs and their applications.


2019 ◽  
Vol 40 (9) ◽  
pp. 1345-1352 ◽  
Author(s):  
Ting Wan ◽  
Fenglin Tang ◽  
Yanru Yin ◽  
Maoxue Zhang ◽  
Martin M. F. Choi ◽  
...  

2021 ◽  
Author(s):  
Shuyang Zhai ◽  
Wei Hu ◽  
Chen Fan ◽  
Wenqi Feng ◽  
Zhi-hong Liu

Monolayer-protected metal nanoclusters (MPCs) are emerging as intriguing luminescent materials, but the construction of MPCs-based optical probe is still scarce because of both the limited photoluminescence efficiency of MPCs and...


2021 ◽  
Vol 22 (9) ◽  
pp. 4433
Author(s):  
Eun Sung Lee ◽  
Byung Seok Cha ◽  
Seokjoon Kim ◽  
Ki Soo Park

In recent years, fluorescent metal nanoclusters have been used to develop bioimaging and sensing technology. Notably, protein-templated fluorescent gold nanoclusters (AuNCs) are attracting interest due to their excellent fluorescence properties and biocompatibility. Herein, we used an exosome template to synthesize AuNCs in an eco-friendly manner that required neither harsh conditions nor toxic chemicals. Specifically, we used a neutral (pH 7) and alkaline (pH 11.5) pH to synthesize two different exosome-based AuNCs (exo-AuNCs) with independent blue and red emission. Using field-emission scanning electron microscopy, energy dispersive X-ray microanalysis, nanoparticle tracking analysis, and X-ray photoelectron spectroscopy, we demonstrated that AuNCs were successfully formed in the exosomes. Red-emitting exo-AuNCs were found to have a larger Stokes shift and a stronger fluorescence intensity than the blue-emitting exo-AuNCs. Both exo-AuNCs were compatible with MCF-7 (human breast cancer), HeLa (human cervical cancer), and HT29 (human colon cancer) cells, although blue-emitting exo-AuNCs were cytotoxic at high concentrations (≥5 mg/mL). Red-emitting exo-AuNCs successfully stained the nucleus and were compatible with membrane-staining dyes. This is the first study to use exosomes to synthesize fluorescent nanomaterials for cellular imaging applications. As exosomes are naturally produced via secretion from almost all types of cell, the proposed method could serve as a strategy for low-cost production of versatile nanomaterials.


Nano Today ◽  
2021 ◽  
Vol 38 ◽  
pp. 101122
Author(s):  
Xinyi Wang ◽  
Di Zhang ◽  
Ning Jiang ◽  
Xiaofeng Wang ◽  
Naiwen Zhang ◽  
...  

ACS Photonics ◽  
2021 ◽  
Author(s):  
Mirko Vanzan ◽  
Tiziana Cesca ◽  
Boris Kalinic ◽  
Chiara Maurizio ◽  
Giovanni Mattei ◽  
...  

2017 ◽  
Vol 119 (5) ◽  
pp. 56002 ◽  
Author(s):  
Cercis Morera-Boado ◽  
Francisco Hidalgo ◽  
Cecilia Noguez

Sign in / Sign up

Export Citation Format

Share Document