Development of Ultrahigh Surface Area Porous Electrodes using Simultaneous and Sequential Meso- and Micro-structuring Methods

2008 ◽  
Vol 1127 ◽  
Author(s):  
Franchessa Maddox ◽  
Catherine Cook ◽  
Leigh McKenzie ◽  
Brenda O'Neil ◽  
Elizabeth A. Junkin ◽  
...  

ABSTRACTVery high surface area nanostructured metal electrodes are of interest as efficient current collectors. For thin film devices, the nanostructured metal can be grown in place using electrodeposition or electroless deposition. For larger devices metal electrodes structured at more than one length scale are desirable. Self-assembling surfactant templates are a versatile method of generating a range of nanostructures. As we report here, electrodeposition of nickel, cobalt and copper from liquid crystalline solutions of Triton X-100 produces a number of nanostructures, with significant surface area increases. Electrodeposition into templates with microstructure has proven more demanding. Oil-in-water Microemulsions of Tween surfactants and soy oil, produce micrometer scale structures, however measured nickel surface area does not scale with sample thickness. The method is also not robust, and was found to give microstructures only for nickel and cobalt. Experiments show that under our conditions a combination of nickel metal, nickel acetate and nickel/detergent microstructures are formed.

2009 ◽  
Vol 1214 ◽  
Author(s):  
Nikolas Cordes ◽  
Martin Bakker

AbstractSupercapacitors and advanced batteries capable of rapid charge and discharge need conductive three dimensional porous electrodes. The high conductivities of porous metal electrodes are attractive. However, the surface areas of such electrodes are still well short of those achievable in carbon. One approach to formation of high surface area porous metal electrodes is to electrodeposit metal into nanostructured templates on 3-D scaffolds such as nickel foam. By careful control of composition and voltage thin films of mesoporous silica can be deposited onto these 3-D templates. Removal of the templating surfactant produces a very high surface area mesoporous coating. Metal can then be plated into the mesoporous silica, which, after removal of the silica, leaves a high surface area 3-D porous electrode.


2017 ◽  
Vol 114 (35) ◽  
pp. 9279-9283 ◽  
Author(s):  
Prateek Dongare ◽  
Ian MacKenzie ◽  
Degao Wang ◽  
David A. Nicewicz ◽  
Thomas J. Meyer

We describe here a surface-bound, oxide-based procedure for the photooxidation of a family of aromatic hydrocarbons by a phosphate-bearing flavin mononucleotide (FMN) photocatalyst on high surface area metal-oxide films.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lauren M. Otto ◽  
E. Ashley Gaulding ◽  
Christopher T. Chen ◽  
Tevye R. Kuykendall ◽  
Aeron T. Hammack ◽  
...  

AbstractSurface plasmons have found a wide range of applications in plasmonic and nanophotonic devices. The combination of plasmonics with three-dimensional photonic crystals has enormous potential for the efficient localization of light in high surface area photoelectrodes. However, the metals traditionally used for plasmonics are difficult to form into three-dimensional periodic structures and have limited optical penetration depth at operational frequencies, which limits their use in nanofabricated photonic crystal devices. The recent decade has seen an expansion of the plasmonic material portfolio into conducting ceramics, driven by their potential for improved stability, and their conformal growth via atomic layer deposition has been established. In this work, we have created three-dimensional photonic crystals with an ultrathin plasmonic titanium nitride coating that preserves photonic activity. Plasmonic titanium nitride enhances optical fields within the photonic electrode while maintaining sufficient light penetration. Additionally, we show that post-growth annealing can tune the plasmonic resonance of titanium nitride to overlap with the photonic resonance, potentially enabling coupled-phenomena applications for these three-dimensional nanophotonic systems. Through characterization of the tuning knobs of bead size, deposition temperature and cycle count, and annealing conditions, we can create an electrically- and plasmonically-active photonic crystal as-desired for a particular application of choice.


2011 ◽  
Vol 1304 ◽  
Author(s):  
Nikolaus L. Cordes ◽  
Martin G. Bakker

ABSTRACTExtremely high surface area porous electrodes are of interest as current collectors for advanced batteries and as the basis for supercapacitors. For moderate to large scale storage applications a three-dimensional material is needed with porosity at multiple length scales. We are developing a combined bottom up/top down approach to creating such materials by using electrodeposition of mesoporous silica on nickel foam, a commercially available porous conductor widely used as the current collector in various batteries. Electrodeposition produces a conformal coating on the nickel foam. By controlling the electrodeposition time the morphology of the mesoporous silica can be varied from a thin film up to 500 nm thick to a loosely bound agglomeration of mesoporous silica particles capable of completely filling the 0.3-0.5 mm voids of the nickel foam. The internal diameter of the mesopores in the silica can be controlled in the range 2.5-4.8 nm by changing the chain length of the templating surfactant used. Gas adsorption shows surface areas of 400-1600 m2/g of silica deposited, consistent with the assumed structure of the material.


Author(s):  
Kailun Yang ◽  
Recep Kas ◽  
Wilson A. Smith

<p>This study evaluated the performance of the commonly used strong buffer electrolytes, i.e. phosphate buffers, during CO<sub>2</sub> electroreduction in neutral pH conditions by using in-situ surface enhanced infrared absorption spectroscopy (SEIRAS). Unfortunately, the buffers break down a lot faster than anticipated which has serious implications on many studies in the literature such as selectivity and kinetic analysis of the electrocatalysts. Increasing electrolyte concentration, surprisingly, did not extend the potential window of the phosphate buffers due to dramatic increase in hydrogen evolution reaction. Even high concentration phosphate buffers (1 M) break down within the potentials (-1 V vs RHE) where hydrocarbons are formed on copper electrodes. We have extended the discussion to high surface area electrodes by evaluating electrodes composed of copper nanowires. We would like highlight that it is not possible to cope with high local current densities on these high surface area electrodes by using high buffer capacity solutions and the CO<sub>2</sub> electrocatalysts are needed to be evaluated by casting thin nanoparticle films onto inert substrates as commonly employed in fuel cell reactions and up to now scarcely employed in CO<sub>2</sub> electroreduction. In addition, we underscore that normalization of the electrocatalytic activity to the electrochemical active surface area is not the ultimate solution due to concentration gradient along the catalyst layer.This will “underestimate” the activity of high surface electrocatalyst and the degree of underestimation will depend on the thickness, porosity and morphology of the catalyst layer. </p> <p> </p>


Nanoscale ◽  
2015 ◽  
Vol 7 (25) ◽  
pp. 10974-10981 ◽  
Author(s):  
Xiulin Yang ◽  
Ang-Yu Lu ◽  
Yihan Zhu ◽  
Shixiong Min ◽  
Mohamed Nejib Hedhili ◽  
...  

High surface area FeP nanosheets on a carbon cloth were prepared by gas phase phosphidation of electroplated FeOOH, which exhibit exceptionally high catalytic efficiency and stability for hydrogen generation.


Author(s):  
Sisir Maity ◽  
Dheeraj Kumar Singh ◽  
Divya Bhutani ◽  
Suchitra Prasad ◽  
Umesh V. Waghmare ◽  
...  

MethodsX ◽  
2021 ◽  
pp. 101464
Author(s):  
Yichen Wu ◽  
Nan Zhang ◽  
Charles-François de Lannoy

Sign in / Sign up

Export Citation Format

Share Document