scholarly journals Methods for tuning plasmonic and photonic optical resonances in high surface area porous electrodes

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lauren M. Otto ◽  
E. Ashley Gaulding ◽  
Christopher T. Chen ◽  
Tevye R. Kuykendall ◽  
Aeron T. Hammack ◽  
...  

AbstractSurface plasmons have found a wide range of applications in plasmonic and nanophotonic devices. The combination of plasmonics with three-dimensional photonic crystals has enormous potential for the efficient localization of light in high surface area photoelectrodes. However, the metals traditionally used for plasmonics are difficult to form into three-dimensional periodic structures and have limited optical penetration depth at operational frequencies, which limits their use in nanofabricated photonic crystal devices. The recent decade has seen an expansion of the plasmonic material portfolio into conducting ceramics, driven by their potential for improved stability, and their conformal growth via atomic layer deposition has been established. In this work, we have created three-dimensional photonic crystals with an ultrathin plasmonic titanium nitride coating that preserves photonic activity. Plasmonic titanium nitride enhances optical fields within the photonic electrode while maintaining sufficient light penetration. Additionally, we show that post-growth annealing can tune the plasmonic resonance of titanium nitride to overlap with the photonic resonance, potentially enabling coupled-phenomena applications for these three-dimensional nanophotonic systems. Through characterization of the tuning knobs of bead size, deposition temperature and cycle count, and annealing conditions, we can create an electrically- and plasmonically-active photonic crystal as-desired for a particular application of choice.

2009 ◽  
Vol 1214 ◽  
Author(s):  
Nikolas Cordes ◽  
Martin Bakker

AbstractSupercapacitors and advanced batteries capable of rapid charge and discharge need conductive three dimensional porous electrodes. The high conductivities of porous metal electrodes are attractive. However, the surface areas of such electrodes are still well short of those achievable in carbon. One approach to formation of high surface area porous metal electrodes is to electrodeposit metal into nanostructured templates on 3-D scaffolds such as nickel foam. By careful control of composition and voltage thin films of mesoporous silica can be deposited onto these 3-D templates. Removal of the templating surfactant produces a very high surface area mesoporous coating. Metal can then be plated into the mesoporous silica, which, after removal of the silica, leaves a high surface area 3-D porous electrode.


2017 ◽  
Vol 89 (4) ◽  
pp. 565-577 ◽  
Author(s):  
Lucie Speyer ◽  
Océane Louppe ◽  
Sébastien Fontana ◽  
Sébastien Cahen ◽  
Claire Hérold

AbstractGraphene-based materials are extensively studied, due to their excellent properties and their wide range of possible applications. Attention has recently been paid to three-dimensional-like graphenic structures, such as crumpled graphene sheets and graphenic foams: these kinds of materials can combine the properties of graphene associating high surface area and porosity, what is particularly interesting for energy or catalysis applications. Most of the synthesis methods leading to such structures are based on graphite oxide exfoliation and re-assembly, but in this work we focus on the preparation of graphenic foams by a solvothermal-based process. We performed a solvothermal reaction between ethanol and sodium at 220°C, during 72 h, under 200 bar, followed by a pyrolysis under nitrogen flow. An extended study of the influence of the temperature (800°C–900°C) of pyrolysis evidences an unexpected strong effect of this parameter on the characteristics of the materials. The optimal conditions provide multi-layer graphene (10 layers) foam with a surface area of 2000 m2·g−1. This work is an important step for the understanding of the mechanisms of the thermal treatment. Post-treatments in different experimental conditions are performed in order to modulate the structure and properties of the graphenic foams.


Author(s):  
Ketki Lichade ◽  
Yizhou Jiang ◽  
Yayue Pan

Abstract Recently, many studies have investigated additive manufacturing of hierarchical surfaces with high surface area/volume (SA/V) ratios, and their performance has been characterized for applications in next-generation functional devices. Despite recent advances, it remains challenging to design and manufacture high SA/V ratio structures with desired functionalities. In this study, we established the complex correlations among the SA/V ratio, surface structure geometry, functionality, and manufacturability in the Two-Photon Polymerization (TPP) process. Inspired by numerous natural structures, we proposed a 3-level hierarchical structure design along with the mathematical modeling of the SA/V ratio. Geometric and manufacturing constraints were modeled to create well-defined three-dimensional hierarchically structured surfaces with a high accuracy. A process flowchart was developed to design the proposed surface structures to achieve the target functionality, SA/V ratio, and geometric accuracy. Surfaces with varied SA/V ratios and hierarchy levels were designed and printed. The wettability and antireflection properties of the fabricated surfaces were characterized. It was observed that the wetting and antireflection properties of the 3-level design could be easily tailored by adjusting the design parameter settings and hierarchy levels. Furthermore, the proposed surface structure could change a naturally-hydrophilic surface to near-superhydrophobic. Geometrical light trapping effects were enabled and the antireflection property could be significantly enhanced (>80% less reflection) by the proposed hierarchical surface structures. Experimental results implied the great potential of the proposed surface structures for various applications such as microfluidics, optics, energy, and interfaces.


2007 ◽  
Vol 19 (17) ◽  
pp. 4367-4372 ◽  
Author(s):  
Ajayan Vinu ◽  
Pavuluri Srinivasu ◽  
Dhanashri P. Sawant ◽  
Toshiyuki Mori ◽  
Katsuhiko Ariga ◽  
...  

2008 ◽  
Vol 1127 ◽  
Author(s):  
Franchessa Maddox ◽  
Catherine Cook ◽  
Leigh McKenzie ◽  
Brenda O'Neil ◽  
Elizabeth A. Junkin ◽  
...  

ABSTRACTVery high surface area nanostructured metal electrodes are of interest as efficient current collectors. For thin film devices, the nanostructured metal can be grown in place using electrodeposition or electroless deposition. For larger devices metal electrodes structured at more than one length scale are desirable. Self-assembling surfactant templates are a versatile method of generating a range of nanostructures. As we report here, electrodeposition of nickel, cobalt and copper from liquid crystalline solutions of Triton X-100 produces a number of nanostructures, with significant surface area increases. Electrodeposition into templates with microstructure has proven more demanding. Oil-in-water Microemulsions of Tween surfactants and soy oil, produce micrometer scale structures, however measured nickel surface area does not scale with sample thickness. The method is also not robust, and was found to give microstructures only for nickel and cobalt. Experiments show that under our conditions a combination of nickel metal, nickel acetate and nickel/detergent microstructures are formed.


2021 ◽  
Vol 16 ◽  
Author(s):  
Balaji Maddiboyina ◽  
Ramya Krishna Nakkala ◽  
Prasanna Kumar Desu ◽  
Vikas Jhawat

Background: Nanoparticles made of silica are new materials that can be used in a wide range of drug delivery methods because they are biocompatible and biodegradable. Mesalamine, a classic water-soluble medication, remains loaded into the synthesized silica nanoparticle and is considered for sustained release proficiency. Precipitation approach using high surface area and pore volume tetraethyl orthosilicate yielded mesalamine-loaded silica nanoparticles. Methods: The drug-loaded nanoparticle was created and produced using two different techniques. Fourier transform infrared spectrometry, differential scanning calorimetry, X-ray powder diffraction, Brauer Emmett teller, scanning electron microscopy, particle size measurements, and dissolution investigations have all been used to analyse the substance in some way or another. Results: Because of the high surface area, well-known results like the complete silica nanoparticle created using method-2 remained mesoporous. The onset peak of the method-2 formulation's DSC was 182.27°c, and the offset peak was 192.14°c, consistent with the DSC results. The particle size range varies from 205-225nm. The results demonstrate that the uptake of the mesalamine by burst release it for 30 minutes initial, followed by sustained maintenance of dose even after 240 minutes. The results indicate that the loading process has an effect on the extent of loading. When silica nanoparticles were impregnated with mesalamine, the amount of the drug contained was significantly higher than when they were wetted. Conclusion: In addition, the XRD results show that both the pure mesalamine and the formulation did not show any polymorphic deviation.


2016 ◽  
Vol 852 ◽  
pp. 1349-1355
Author(s):  
Jia Yi Zhu ◽  
Xi Yang ◽  
Zhi Bing Fu ◽  
Chao Yang Wang ◽  
Wei Dong Wu ◽  
...  

The ultra-low density carbon aerogel, as low as 20 mg/cm3, was fabricated by pyrolysis of the organic aerogel formed by aqueous condensation of resorcinol and formaldehyde. Its surface area was as high as 1783 m2/g and it was used for investigation of electrochemical capacitive behaviours. The ultra-low density carbon aerogel displayed capacitive performance (110 F/g at 0.2 A/g) in 6 M KOH aqueous solution. Additionally, over 98% of the initial capacitance was retained after repeating the cyclic voltammetry test for 1000 cycles. The electrochemical performance might be attributed to the combination of three dimensional “opened” structure and high surface area of the carbon aerogel.


Paleobiology ◽  
2000 ◽  
Vol 26 (4) ◽  
pp. 556-577 ◽  
Author(s):  
George R. McGhee ◽  
Frank K. McKinney

Exploration of the theoretical morphospace of erect helical colony form in Bryozoa, created by McKinney and Raup (1982), reveals that only a small volume of the three-dimensional space of hypothetical form is occupied by actual colonies of the Paleozoic fenestrates (Class Stenolaemata) Archimedes and Helicopora, helical species of the cheilostome (Class Gymnolaemata) Bugula, and the cyclostome (Class Stenolaemata) Crisidmonea archimediformis. Actual helical-colony bryozoans are not found in regions of the morphospace characterized by colony geometries that possess the largest surface areas of filtration sheet. Examination of computer-simulated colonies in the theoretical morphospace reveals that, although possessing high surface areas, colonies in the empty region of high-surface-area morphospace possess other aspects of geometry that are unrealistic as filter-feeding geometries: the filtration-sheet whorls are held at small acute angles to the central colony axis and are deeply nested within one another, both of which are disadvantageous conditions for the system of filter feeding used by the extant cheilostome Bugula, and presumably by extinct helical-colony bryozoans as well.Even though actual bryozoans are found only in the low to intermediate surface-area regions of the theoretical morphospace, surface area of filtration sheet is a major determinant of form in these helical colonies, as is evidenced by a negative correlation in values of the parameters BWANG and ELEV exhibited by the colony data. Minimum values of BWANG are even further constrained by the apparent need of the Archimedes colonies to maintain filtration-sheet branching densities within the range of 20 to 50.


Sign in / Sign up

Export Citation Format

Share Document