Improved bond valence models for ion transport pathways in glasses

2008 ◽  
Vol 1152 ◽  
Author(s):  
Stefan N. Adams

ABSTRACTStructure property function relationships provide valuable guidelines for a systematic development of functional materials. It is demonstrated how an augmented bond valence (BV) approach helps to establish such relationships in solid electrolytes. In principle it permits to identify mobile species, transport pathways and provides estimates for ion mobilities. In this work we discuss ion conduction pathways in glassy Lithium metasilicate as an illustrative example. The required representative local structure model is derived from Molecular Dynamics simulations, which provides the opportunity to compare the bond-valence-based predictions from a static structure model with a comprehensive analysis of a complete simulation trajectory. It is shown that understanding the bond valence mismatch as an effective Morse-type interaction opens up a way for systematically analyzing ion transport pathways and for a generally applicable method with improved reliability to predict ion transport characteristics in solid electrolytes from the structure model.

2004 ◽  
Vol 835 ◽  
Author(s):  
Stefan Adams

ABSTRACTBond valence mismatch landscapes may serve as simple models of the effective energy landscapes for mobile ions in solid electrolytes. Thereby they provide a tool to identify the ion transport mechanism and allow to predict the activation energy of the ionic conduction. Accounting for the mass dependence of the conversion from the BV mismatch into an activation energy scale yields a correlation that holds for different types of mobile cations. While in most cases the analysis of bond valence mismatch landscapes is consistent with the ion transport mechanism derived from experimental or other computational evidence, the presumed prototype of trivalent cation conductors Sc2(WO4)3 is discussed as an example, where the BV analysis of transport pathways suggests that the interpretation of previous experimental investigations has to be reconsidered. Both bond valence calculations and molecular dynamics simulations suggests that the most probable mobile species in stoichiometric Sc2(WO4)3 is neither Sc3+ nor individual O2- but the complex divalent anion WO42-.


MRS Bulletin ◽  
2000 ◽  
Vol 25 (3) ◽  
pp. 22-26 ◽  
Author(s):  
J. L. Sudworth ◽  
P. Barrow ◽  
W. Dong ◽  
B. Dunn ◽  
G. C. Farrington ◽  
...  

The beta-alumina family of materials has played a central role in the field of solid-state ionics. β- and β-alumina have been a principal theme in the field ever since Yao and Kummer reported the extraordinarily high conductivity for sodium β-alumina. The material “came of age” at a time when there was great interest in the science and technology of highconductivity solid electrolytes. A previous MRS Bulletin review introduced this broad family of materials, examining the range of compositions and the two major structures. The beta-alumina family emerged as almost an ideal system in which to explore structure-property relations, as its unusual structure is responsible for its remarkable ion-transport properties. Although the initial interest in this material, and the one which endures to this day, is its rapid sodium-ion transport, the rich ion-exchange chemistry added a dimension to this material that few inorganic systems can match, let alone exceed. β-alumina, in particular, is an almost universal solid electrolyte for cations. It constitutes a broad family of solid electrolytes whose properties are dependent upon the nature of the ion inserted into the conduction plane. As a result, the β-aluminas have served as model systems for a wide range of studies: proton transport and mixed-ion diffusion, order-disorder reactions, and superlattice phenomena. Moreover, these β-alumina compositions demonstrated that fast-ion transport was not limited to a few monovalentions, but could be extended to divalent and even trivalent cations. With the latter materials, the interest was not necessarily ion transport, but optical properties instead. The presence of trivalent cations in this unusual structure, coupled with the ability to control the chemistry of the local environment, enabled the β-aluminas to exhibit a number of novel optical properties.


2017 ◽  
Vol 310 ◽  
pp. 71-80 ◽  
Author(s):  
Didier Devaux ◽  
Irune Villaluenga ◽  
Mahesh Bhatt ◽  
Deep Shah ◽  
X. Chelsea Chen ◽  
...  

Author(s):  
Francesca P. A. Fabbiani

High pressure has become an indispensable research tool in the quest for novel functional materials. High-pressure crystallographic studies on non-porous, framework materials based on coordination compounds are markedly on the rise, enabling the unravelling of structural phenomena and taking us a step closer to the derivation of structure–property relationships.


2020 ◽  
Vol 8 (37) ◽  
pp. 19603-19611
Author(s):  
Adam R. Symington ◽  
John Purton ◽  
Joel Statham ◽  
Marco Molinari ◽  
M. Saiful Islam ◽  
...  

Solid electrolytes for all-solid-state batteries are generating considerable research interest as a means to improving their safety, stability and performance.


Sign in / Sign up

Export Citation Format

Share Document