Evaporative Deposition of Bacteria and Microspheres on Mica from a Sessile Drop: The Use of Surface Conditioning in a Laboratory Atmosphere to Control Drop Spreading and Particle Deposition Patterns

2010 ◽  
Vol 1273 ◽  
Author(s):  
Joan E Curry ◽  
Raina M. Maier ◽  
Theresa A. Norris ◽  
Kyle Fisher Baughman

AbstractEvaporative deposition from a sessile drop is an appealing way to deposit materials on a surface due to the simplicity of the technique. In this work we deposit aqueous solutions of two types of colloidal particles, namely bacteria and microspheres, on mica. We show that by controlling the extent of initial drop spreading through subtle changes in surface conditioning caused by exposure to the laboratory atmosphere in a laminar flow hood it is possible to systematically vary the particle deposition patterns. On freshly cleaved mica the contact angle of water is < 5°. Drops of bacterial and microsphere solutions deposited on freshly cleaved mica spread to cover a large surface area. Drying occurs through pinning and depinning events leaving a series of colloidal particle rings. We found in our laboratory that the contact angle of water on mica exposed to a constant flow of filtered laboratory air in a laminar flow hood gradually increases with time. For drops of both bacterial and microsphere solutions there is a corresponding decrease in the extent of drop spreading with increasing exposure of the mica surface to laboratory air. This results in a profound change in the colloidal particle deposition pattern. Short exposures of minutes to hours are enough to decrease spreading and affect the resulting deposition pattern. For our longest mica surface exposure times (months to 1 year) the contact angle of water reaches values near 20°. Spreading of the bacterial and microsphere drops is substantially decreased. A portion of the colloidal particles are deposited in an outer deposition ring which marks the extent of drop spreading and the remainder of the particles are deposited in the drop interior as a honeycomb or cellular film. The fraction of the drop residue covered with the cellular film increases with particle concentration as well as the length of time the mica is exposed to the laboratory atmosphere. This work shows that evaporative deposition on mica is very sensitive to surface conditioning through atmospheric exposure and also suggests that particle deposition patterns can be tuned by small changes in drop spreading.

Author(s):  
Peter D. Dunning ◽  
Collin T. Burkhart ◽  
Michael J. Schertzer

Control of deposition patterns left by desiccated colloidal droplets is valuable in applications ranging from medical diagnostics to inkjet printing. This investigation presents an experimental method to monitor the transient interface shape of a colloidal droplet during desiccation and to quantify the deposition pattern left by the colloidal material optically. Transient image profiles and particle deposition patterns are examined for droplets containing fluorescent particles that were desiccated on glass and on the photoresist SU-8 3005. Contact line pinning was more prevalent on glass, where the contact diameter remained approximately constant throughout the process and the contact angle decreased with time. On SU-8, the contact diameter was initially constant, but decreased after the contact angle was reduced. The initial contact diameter on glass was similar to the diameter of the deposition pattern. The diameter of the deposition pattern on SU-8 was approximately half of the initial contact diameter. The deposition on SU-8 was also observed to be more uniform than that left on glass. These results suggest that selection of an appropriate substrate is an important consideration for colloidal deposition. The method presented will be used to in future investigations to characterize the effectiveness of coffee stain suppression through the application of external electric fields.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Pei-Fang Sung ◽  
Lihui Wang ◽  
Michael T. Harris

The deposition of colloidal silica particles during the evaporation of sessile drops on a smooth substrate has been modeled by the simultaneous solution of the Navier–Stokes equations, the convective-diffusive equation for particles, and the diffusion equation for evaporated vapor in the gas phase. Isothermal conditions were assumed. A mapping was created to show the conditions for various deposition patterns for very dilute suspensions. Based on values of the Peclet (Pe) number and Damkholer numbers (Da and Da−1), the effects of adsorption and desorption were discussed according to the map. Simulations were also done for suspensions with a high particle concentration to form a solid phase during the evaporation by using a packing criterion. The simulations predicted the height and width of the ring deposit near the contact line, and the results compared favorably to experimental particle deposition patterns.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Andreas M. Menzel ◽  
Hartmut Löwen

Abstract Magnetic gels and elastomers consist of magnetic or magnetizable colloidal particles embedded in an elastic polymeric matrix. Outstanding properties of these materials comprise reversible changes in their mechanical stiffness or magnetostrictive distortions under the influence of external magnetic fields. To understand such types of overall material behavior from a theoretical point of view, it is essential to characterize the substances starting from the discrete colloidal particle level. It turns out that the macroscopic material response depends sensitively on the mesoscopic particle arrangement. We have utilized and developed several theoretical approaches to this end, allowing us both to reproduce experimental observations and to make theoretical predictions. Our hope is that both these paths help to further stimulate the interest in these fascinating materials.


2021 ◽  
pp. 095400832098729
Author(s):  
K Sudheendra ◽  
Jennifer Vinodhini ◽  
M Govindaraju ◽  
Shantanu Bhowmik

The study involves the processing of a novel poly [1, 4-phenylene-cis-benzobisoxazole] (PBO) fibre reinforced high-temperature thermoplastic composite with polyaryletherketone (PAEK) as the matrix. The PBO fibre and the PAEK film surface was modified using the method of argon and nitrogen plasma treatment. The investigation primarily focuses on evaluating the tensile properties of the fabricated laminates and correlating it with the effect of plasma treatment, surface characteristics, and its fracture surface. A 5% decrease in tensile strength was observed post argon plasma treatment while a 27% increase in strength was observed post nitrogen plasma treatment. The morphology of the failure surface was investigated by scanning electron microscopy and an interfacial failure was observed. Furthermore, the effect of plasma on the wettability of PBO fibres and PAEK film surface was confirmed by the Dynamic Contact Angle analysis and sessile drop method respectively. FTIR spectral analysis was done to investigate the effect of plasma treatment on the chemical structure on the surface. The results of the wettability study showed that the argon plasma treatment of the fibre surface increased its hydrophobicity while nitrogen plasma treatment resulted in the reduction of contact angle.


2005 ◽  
Vol 21 (3) ◽  
pp. 243-253 ◽  
Author(s):  
Sabrina E. Russo

Natural seed deposition patterns and their effects on post-dispersal seed fate are critical in tropical tree recruitment. Previous research showed that the key dispersal agent of the neotropical tree, Virola calophylla, is the spider monkey (Ateles paniscus). Spider monkeys generate a heterogeneous seed deposition pattern because they scatter-disperse seeds diurnally, whereas they clump-disperse seeds at their sleeping sites. The recruitment consequences of this pattern were investigated using manipulative experiments and observations. Scatter-hoarding by spiny rats (Proechimys spp.) caused little rearrangement of the initial seed deposition pattern because they moved seeds only short distances. Seed survival to the seedling stage depended negatively on conspecific seed density and positively on the distance from the nearest adult V. calophylla female. These effects were likely mediated by two important seed predators, spiny rats and beetles (Scolytidae). Furthermore, spider monkeys' seed deposition patterns influenced seed survival. Scatter-dispersed and experimentally dispersed seeds had the highest survival. Conversely, clump-dispersed seeds at sleeping sites, which are far from V. calophylla females, and non-dispersed seeds had equally low survival, suggesting that conspecific density- and distance-dependence acted independently and did not explain all variation in seed survival. Instead, other characteristics of the seed deposition pattern, such as the multi-specific assemblage of seeds at sleeping sites, also affected post-dispersal seed fates.Resumen: La conexión entre el patrón natural de dispersión de semillas con el destino después de la dispersión es clave para el reclutamiento de árboles tropicales. Mediante experimentos y observaciones se investigó esta conexión utilizando el árbol neotropical Virola calophylla (Myristicaceae). Ateles paniscus (maquisapa), el principal dispersor de sus semillas, genera un patrón de deposición heterogéneo. Durante el día las semillas son depositadas de manera esparcida mientras que en los dormitorios las semillas son depositadas de manera agregada. En este estudio se encontró que los roedores espinosos (Proechimys spp.) almacenaron semillas individuales debajo de la hojarasca, sin embargo estos no alteraron el patrón de dispersión ya que las semillas fueron transportadas distancias cortas y la tasa de predación fue alta. Se encontró que la tasa de sobrevivencia hasta la etapa de plántula tuve una relación negativa con la densidad de las semillas y una relación positiva con la distancia al árbol hembra de V. calophylla mas cercano. Estos efectos sucedieron por medio de roedores espinosos y coleópteros (Scolytidae), predadores importantes de las semillas de V. callophylla. Adicionalemente, el patrón de deposición de los maquisapas influenció la sobrevivencia de las semillas. Tanto las semillas dispersadas por los maquisapas como las dispersadas experimentalmente tuvieron la tasa de sobrevivencia más alta. Por el contrario, tanto las semillas depositadas en los dormitorios, usualmente lejos de hembras de V. calophylla, como las semillas que cayeron debajo del árbol hembra tuvieron bajos niveles de sobrevivencia. Estos reultados sugieren que tanto la densidad como la distancia tuvieron efectos independientes y no explicaron toda la variación observada en la sobrevivencia de semillas. Por el contrario, otras características de la deposición de semillas tales como la riqueza de especies de la comunidad de semillas en los dormitorios también afectaron el destino de las semillas después de dispersadas.


2009 ◽  
Vol 21 (S1) ◽  
pp. 67-76 ◽  
Author(s):  
David Brutin ◽  
ZhiQuiang Zhu ◽  
Ouamar Rahli ◽  
JingChang Xie ◽  
QuiSheng Liu ◽  
...  
Keyword(s):  

2008 ◽  
pp. 21-28
Author(s):  
Tatjana Kuljanin ◽  
Ljubinko Levic ◽  
Nevena Misljenovic ◽  
Gordana Koprivica

Electrokinetic potential is an important property of colloidal particles and, regarding the fact that it is a well defined and easily measurable property, it is considered to be a permanent characteristic of a particular colloidal system. In fact, it is a measure of electrokinetic charge that surrounds the colloidal particle in a solution and is in direct proportion with the mobility of particles in an electric field. Gouy-Chapman-Stern-Graham's model of electric double layer was adopted and it was proven experimentally that the addition of Cu++ ions to sugar beet pectin caused a reduction in the negative electrokinetic potential proportional to the increase of Cu++ concentration. Higher Cu++ concentrations increased the proportion of cation specific adsorption (Cu++ and H+) with regard to electrostatic Coulombic forces. Consequently, there is a shift in the shear plane between the fixed and diffuse layers directed towards the diffuse layer, i.e. towards its compression and decrease in the electrokinetic potential or even charge inversion of pectin macromolecules.


Sign in / Sign up

Export Citation Format

Share Document