sleeping sites
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 22)

H-INDEX

20
(FIVE YEARS 2)

Author(s):  
Addisu Mekonnen ◽  
Peter J. Fashing ◽  
Vivek V. Venkataraman ◽  
Colin A. Chapman ◽  
Nils Chr. Stenseth ◽  
...  

AbstractAlthough selecting advantageous sleeping sites is crucial for nonhuman primates, the extent to which different factors contribute to their selection remains largely unknown for many species. We investigated hypotheses relating to predator avoidance, food access, and thermoregulation to explain the sleeping behavior of Bale monkeys (Chlorocebus djamdjamensis) occupying a degraded fragmented forest, Kokosa, in the southern Ethiopian Highlands. We found that the study group reused 11 out of 20 sleeping sites used during the 42 study days over a 6-month period. Sleeping sites were usually close to the last feeding trees of the day (mean distance =15.2 m) and/or the first feeding trees of the next morning (mean distance = 13.5 m). This may reflect an attempt to maximize feeding efficiency and reduce travel costs. Compared to the mean trees in the study area, sleeping trees were significantly shorter. Bale monkeys selected sleeping places in trees with high foliage density above and below them, lending support to the hypothesis that they select sleeping places that can conceal them from predators and at the same time offer shelter from cold weather. The monkeys also frequently huddled at night. Our results suggest that predator avoidance, access to food resources, and thermoregulation all likely influence the selection of sleeping sites by Bale monkeys.


2021 ◽  
Author(s):  
Rebecca Brown ◽  
Heather Ferguson ◽  
Milena Salgado-Lynn ◽  
Chua Tock-hing ◽  
Indra Vythilingam ◽  
...  

Several vector-borne pathogens of primates have potential for human spillover. An example is the simian malaria Plasmodium knowlesi which is now a major public health problem in Malaysia. Characterization of exposure to mosquito vectors is essential for assessment of the force of infection within wild primate populations, however few methods exist to do so. Here we demonstrate the use of thermal imaging and Mosquito Magnet Independence Traps (MMIT) to assess the abundance, diversity and infection rates in mosquitoes host seeking near long-tailed macaque (Macaca fasicularis) sleeping sites in the Lower Kinabatangan Wildlife Sanctuary, Malaysian Borneo. The primary Plasmodium knowlesi vector, Anopheles balabacensis, was trapped at higher abundance near sleeping sites than control trees. Although none of the An. balabacensis collected (n=15) were positive for P. knowlesi, two were infected with another primate malaria Plasmodium inui. Analysis of macaque stools from sleeping sites confirmed a high prevalence of Plasmodium infection, suspected to be P. inui. Plasmodium inui infections have not yet been reported in humans, but its presence in An. balabacensis here and previously in human-biting collections highlight its potential for spillover. We advocate the use of MMITs for non-invasive sampling of mosquito vectors that host seek on wild primate populations.


2021 ◽  
Vol 224 (9) ◽  
Author(s):  
Patricia C. Lopes ◽  
Susannah S. French ◽  
Douglas C. Woodhams ◽  
Sandra A. Binning

ABSTRACT There is nothing like a pandemic to get the world thinking about how infectious diseases affect individual behavior. In this respect, sick animals can behave in ways that are dramatically different from healthy animals: altered social interactions and changes to patterns of eating and drinking are all hallmarks of sickness. As a result, behavioral changes associated with inflammatory responses (i.e. sickness behaviors) have important implications for disease spread by affecting contacts with others and with common resources, including water and/or sleeping sites. In this Review, we summarize the behavioral modifications, including changes to thermoregulatory behaviors, known to occur in vertebrates during infection, with an emphasis on non-mammalian taxa, which have historically received less attention. We then outline and discuss our current understanding of the changes in physiology associated with the production of these behaviors and highlight areas where more research is needed, including an exploration of individual and sex differences in the acute phase response and a greater understanding of the ecophysiological implications of sickness behaviors for disease at the population level.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Mikel A. González ◽  
Erin Dilger ◽  
María M. Ronderos ◽  
Gustavo R. Spinelli ◽  
Orin Courtenay ◽  
...  

Abstract Background We assessed the impact of two sand fly insecticide interventions (insecticide spraying and insecticide-impregnated dog collars) on the peridomestic abundance and distribution of mosquitoes (Culicidae) and biting midges (Ceratopogonidae) in western São Paulo (Brazil) in a long-term (42-month) evaluation. Both of these dipteran groups are vectors of diseases of medical and veterinary relevance to humans and domestic animals in Brazil. Methods The interventions in the 3-arm stratified randomised control trial were: pheromone + insecticide (PI) (chicken roosts were sprayed with microencapsulated lambda-cyhalothrin; pheromone lure has no effect on the Diptera pests studied here); dog-collars (DC) (dogs fitted with deltamethrin-impregnated collars); and control (C) (unexposed to pyrethroids) were extended by 12 months. During that time, adult mosquitoes and midges were sampled along 280 households at three household locations (inside human dwellings, dog sleeping sites and chicken roosts). Results We collected 3145 culicids (9 genera, 87.6% Culex spp.) distributed relatively uniformly across all 3 arms: 41.9% at chicken roosts; 37.7% inside houses; and 20.3% at dog sleeping sites. We collected 11,464 Culicoides (15 species) found mostly at chicken roosting sites (84.7%) compared with dog sleeping sites (12.9%) or houses (2.4%). Mosquitoes and Culicoides were most abundant during the hot and rainy season. Increased daytime temperature was marginally associated with increased mosquito abundance (Z = 1.97, P = 0.049) and Culicoides abundance (Z = 1.71, P = 0.087). There was no significant association with daily average rainfall for either group. Household-level mosquito and midge numbers were both significantly reduced by the PI intervention 56% [incidence rate ratio, IRR = 0.54 (95% CI: 0.30–0.97), P ≤ 0.05] and 53% [IRR = 0.47 (95% CI: 0.26–0.85), P ≤ 0.05], respectively, compared to the control intervention. The abundance of both dipteran groups at dog sleeping sites was largely unaffected by the PI and DC interventions. The PI intervention significantly reduced abundance of mosquitoes inside houses (41%) and at chicken roosting sites (48%) and reduced midge abundance by 51% in chicken roosting sites. Conclusions Sprayed insecticide at chicken roosting sites reduced the abundance of mosquitoes and midges at the peridomestic level while dog collars had no effect on numbers for any group.


2020 ◽  
Author(s):  
Mikel A. González ◽  
Erin Dilger ◽  
María M. Ronderos ◽  
Gustavo R. Spinelli ◽  
Orin Courtenay ◽  
...  

Abstract Background: We assessed the impact of two sand fly insecticide interventions (insecticide spraying and insecticide-impregnated dog collars) on the peridomestic abundance and distribution of mosquitoes (Culicidae) and biting midges (Ceratopogonidae) in western São Paulo (Brazil) in a long-term (42-month) evaluation. Both of these dipteran groups are vectors of diseases of medical and veterinary relevance to humans and domestic animals in Brazil.Methods: The interventions in the 3-arm stratified randomised control trial were: pheromone + insecticide (PI) (chicken roosts were sprayed with microencapsulated lambda-cyhalothrin; pheromone lure has no effect on the Diptera pests studied here); dog-collars (DC) (dogs fitted with deltamethrin-impregnated collars); and control (C) (unexposed to pyrethroids) were extended by 12 months. During that time, adult mosquitoes and midges were sampled along 280 households at three household locations (inside human dwellings, dog sleeping sites and chicken roosts).Results: We collected 3145 culicids (9 genera, 87.6% Culex spp.) distributed relatively uniformly across all 3 arms: 41.9% at chicken roosts; 37.7% inside houses; and 20.3% at dog sleeping sites. We collected 11,464 Culicoides (15 species) found mostly at chicken roosting sites (84.7%) compared with dog sleeping sites (12.9%) or houses (2.4%). Mosquitoes and Culicoides were most abundant during the hot and rainy season. Increased daytime temperature was marginally associated with increased mosquito abundance (Z = 1.97, P = 0.049) and Culicoides abundance (Z = 1.71, P = 0.087). There was no significant association with daily average rainfall for either group. Household-level mosquito and midge numbers were both significantly reduced by the PI intervention 56% [incidence rate ratio, IRR = 0.54 (95% CI: 0.30–0.97), P ≤ 0.05] and 53% [IRR = 0.47 (95% CI: 0.26–0.85), P ≤ 0.05], respectively, compared to the control intervention. The abundance of both dipteran groups at dog sleeping sites was largely unaffected by the PI and DC interventions. The PI intervention significantly reduced abundance of mosquitoes inside houses (41%) and at chicken roosting sites (48%) and reduced midge abundance by 51% in chicken roosting sites.Conclusions: Sprayed insecticide at chicken roosting sites reduced the abundance of mosquitoes and midges at the peridomestic level while dog collars had no effect on numbers for any group.


2020 ◽  
Author(s):  
Sara E. Canavati ◽  
Gerard C. Kelly ◽  
Cesia E. Quintero ◽  
Thuan Huu Vo ◽  
Long Khanh Tran ◽  
...  

Abstract BackgroundIndividuals that work and sleep in remote forest and farm locations in the Greater Mekong Subregion continue to remain at high risk of both acquiring and transmitting malaria. These difficult-to-access population groups largely fall outside the reach of traditional village-centered interventions, presenting operational challenges for malaria programs. In Vietnam, over 60% of malaria cases are thought to be individuals who sleep in forests or on farms. New malaria elimination strategies are needed in countries where mobile and migrant workers frequently sleep outside of their homes. The aim of this study was to apply targeted surveillance-response based investigative approaches to gather location-specific data on confirmed malaria cases, with an objective to identify associated malaria prevention, treatment and risk behaviors of individuals sleeping in remote forest and farms sites in Vietnam. MethodsA cross-sectional study using novel targeted reactive investigative approaches at remote area sleeping sites was conducted in three mountainous communes in Phu Yen province in 2016. Index cases were defined as individuals routinely sleeping in forests or farms who had tested positive for malaria. Index cases and non-infected neighbors from forest and farm huts within 500m of the established sleeping locations of index cases were interviewed at their remote-area sleeping sites. ResultsA total of 307 participants, 110 index cases and 197 neighbors, were enrolled. Among 93 participants who slept in the forest, index cases were more likely to make >5 trips to the forest per year (prevalence odds ratio (POR) 7.41, 95% confidence interval (CI) 2.66–20.63), sleep in huts without walls (POR 44.00, 95% CI 13.05–148.33), sleep without mosquito nets (POR 2.95, 95% CI 1.26–6.92), and work after dark (POR 5.48, 95% CI 1.84–16.35). Of the 204 farm-based respondents, a significantly higher proportion of index cases were involved in non-farming activities (logging) (POR 2.74, 95% CI 1.27–5.91). ConclusionInvestigative approaches employed in this study allowed for the effective recruitment and characterization of high-priority individuals frequently sleeping in remote forest and farm locations, providing relevant population and site-specific data that decision makers can use to design and implement targeted interventions to support malaria elimination.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Sara E. Canavati ◽  
Gerard C. Kelly ◽  
Cesia E. Quintero ◽  
Thuan Huu Vo ◽  
Long Khanh Tran ◽  
...  

Abstract Background Individuals that work and sleep in remote forest and farm locations in the Greater Mekong Subregion continue to remain at high risk of both acquiring and transmitting malaria. These difficult-to-access population groups largely fall outside the reach of traditional village-centered interventions, presenting operational challenges for malaria programs. In Vietnam, over 60% of malaria cases are thought to be individuals who sleep in forests or on farms. New malaria elimination strategies are needed in countries where mobile and migrant workers frequently sleep outside of their homes. The aim of this study was to apply targeted surveillance-response based investigative approaches to gather location-specific data on confirmed malaria cases, with an objective to identify associated malaria prevention, treatment and risk behaviors of individuals sleeping in remote forest and farms sites in Vietnam. Methods A cross-sectional study using novel targeted reactive investigative approaches at remote area sleeping sites was conducted in three mountainous communes in Phu Yen province in 2016. Index cases were defined as individuals routinely sleeping in forests or farms who had tested positive for malaria. Index cases and non-infected neighbors from forest and farm huts within 500 m of the established sleeping locations of index cases were interviewed at their remote-area sleeping sites. Results A total of 307 participants, 110 index cases and 197 neighbors, were enrolled. Among 93 participants who slept in the forest, index cases were more likely to make > 5 trips to the forest per year (prevalence odds ratio (POR) 7.41, 95% confidence interval (CI) 2.66–20.63), sleep in huts without walls (POR 44.00, 95% CI 13.05–148.33), sleep without mosquito nets (POR 2.95, 95% CI 1.26–6.92), and work after dark (POR 5.48, 95% CI 1.84–16.35). Of the 204 farm-based respondents, a significantly higher proportion of index cases were involved in non-farming activities (logging) (POR 2.74, 95% CI 1.27–5.91). Conclusion Investigative approaches employed in this study allowed for the effective recruitment and characterization of high-priority individuals frequently sleeping in remote forest and farm locations, providing relevant population and site-specific data that decision makers can use to design and implement targeted interventions to support malaria elimination.


2020 ◽  
Author(s):  
Mikel A. González ◽  
Erin Dilger ◽  
María M. Ronderos ◽  
Gustavo R. Spinelli ◽  
Orin Courtenay ◽  
...  

Abstract Background: We assessed the impact of two sand fly insecticide interventions (insecticide spraying and insecticide-impregnated dog collars) on the peridomestic abundance and distribution of mosquitoes (Culicidae) and biting midges (Ceratopogonidae) in Western São Paulo (Brazil) in a long-term (42-month) evaluation. Both of these Dipteran groups are vectors of diseases of medical and veterinary relevance to humans and domestic animals in Brazil. Methods: The interventions in the 3-arm stratified randomised control trial were: pheromone + insecticide (PI) (chicken roosts were sprayed with microencapsulated lambda-cyhalothrin; pheromone lure has no effect on the Diptera pests studied here), dog-collars (DC) (dogs fitted with deltamethrin-impregnated collars), and control (C) (unexposed to pyrethroids) were extended by 12 months. During that time, adult mosquitoes and midges were sampled along 280 households at three household locations (inside human dwellings, dog sleeping sites, and chicken roosts).Results: We collected 3,145 culicids (9 genera, 87.6% Culex spp.) distributed relatively uniformly across all 3 arms; 41.9% at chicken roosts, 37.7% inside houses, and 20.3% at dog sleeping sites. We collected 11,464 Culicoides (15 species) found mostly at chicken roosting sites (84.7%) compared with dog sleeping sites (12.9%) or houses (2.4%). Mosquitoes and Culicoides were most abundant during the hot and rainy season. Increased daytime temperature was marginally associated with increased mosquito abundance (z = 1.97; P = 0.049) and Culicoides abundance (z = 1.71; P = 0.087). There was no significant association with daily average rainfall for either group. Household-level mosquito and midge numbers were both significantly reduced by the PI intervention 56% [Incidence Rate Ratio, IRR = 0.54 (95% C.I. 0.30, 0.97), P ≤ 0.05] and 53% [IRR = 0.47 (0.26, 0.85), P ≤ 0.05], respectively, compared to the control intervention. The abundance of both Dipteran groups at dog sleeping sites was largely unaffected by the PI and DC interventions. The PI intervention significantly reduced abundance of mosquitoes inside houses (41%) and at chicken roosting sites (48%) and reduced midge abundance by 51% in chicken roosting sites.Conclusions: Sprayed insecticide at chicken roosting sites reduced the abundance of mosquitoes and midges at the peridomestic level while dog collars had no effect on numbers for any group.


Sign in / Sign up

Export Citation Format

Share Document