Incorporation of NSAID Drug Gel Derived from Cellulose and Polyacrylamide

2010 ◽  
Vol 1280 ◽  
Author(s):  
C. A. Morales ◽  
M. C. Castillo ◽  
Z. N. Díaz ◽  
S. J. González ◽  
V. O. Kharissova

AbstractIn this paper, the incorporation and release of two types of drugs was carried out in microgels of hydroxypropylcellulose/polyacrylamide (HPC/PAAM) and hydroxyethylcellulose/polyacrylamide (HEC/PAAM). The two drugs were NSAIDs (nonsteroidal, anti-inflammatory drugs)—one antipyretic and one analgesic—acetylsalicylic acid (aspirin, ASP) and iuprofen (IBU), respectively. First, the microgels were synthesized and characterized by Fourier Transform Infrared Spectroscopy (FTIR) in order to identify the presence of functional groups for each polymer. The incorporation of the drug was made by swelling the microgels in a drug solution and finally carrying out the release of the substances listed at 37° C. The results were obtained by UV-visible spectroscopy.

Author(s):  
S. J. Pradeeba ◽  
K. Sampath

This research was carried out based on the significance of protecting the environment by preventing the contamination of water caused from effluents discharge from dyeing industries, effective nanocomposite were prepared to solve this problem. The poly(azomethine), ZnO, and poly(azomethine)/ZnO nanocomposites were prepared and characterized by Fourier transform-infrared spectroscopy, ultraviolet (UV)–visible spectroscopy, powder X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDAX), scanning electron Microscope (SEM), and transmission electron microscopy (TEM) techniques. Methylene blue (MB), Malachite green (MG), and Bismarck brown (BB) were degraded from water using poly(azomethine) (PAZ), zinc oxide (ZnO), PAZ/ZnO (PNZ) nanocomposites as photocatalyst in the presence of natural sunlight. The degradation efficiency and reaction kinetics were calculated, and the outcome of the photocatalytic experiments proved that the PAZ/ZnO nanocomposites reveals excellent photocatalytic activity and effective for decolorization of dye containing waste water than PAZ and ZnO in the presence of natural sunlight. The maximum degradation efficiency 97%, 96%, and 95% was obtained for PNZ nanocomposites at optimum dosage of catalyst as 500 mg and 50 ppm of MB, MG, and BB dye concentration, respectively. The maximum degradation time was 5 h. After photocatalytic study, the samples were characterized by Fourier-transform infrared spectroscopy (FT-IR) and UV–visible spectroscopy.


Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1144
Author(s):  
Konda Shireesha ◽  
Thida Rakesh Kumar ◽  
Tumarada Rajani ◽  
Chidurala Shilpa Chakra ◽  
Murikinati Mamatha Kumari ◽  
...  

This paper describes the synthesis and characterization of NiMgOH-rGO nanocomposites made using a chemical co-precipitation technique with various reducing agents (e.g., NaOH and NH4OH) and reduced graphene oxide at 0.5, 1, and 1.5 percent by weight. UV-visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, a particle size analyzer, and cyclic voltammetry were used to characterize the composite materials. The formation of the NiMgOH-rGO nanocomposite with crystallite sizes in the range of 10–40 nm was inferred by X-ray diffraction patterns of materials, which suggested interlayers of Ni(OH)2 and Mg(OH)2. The interactions between the molecules were detected using Fourier-transform infrared spectroscopy, while optical properties were studied using UV-visible spectroscopy. A uniform average particle size distribution in the range of 1–100 nm was confirmed by the particle size analyzer. Using cyclic voltammetry and galvanostatic charge/discharge measurements in a 6 M KOH solution, the electrochemical execution of NiMgOH-rGO nanocomposites was investigated. At a 1 A/g current density, the NiMgOH-rGO nanocomposites prepared with NH4OH as a reducing agent had a higher specific capacitance of 1977 F/g. The electrochemical studies confirmed that combining rGO with NiMgOH increased conductivity.


2020 ◽  
Vol 4 (2) ◽  
pp. 96
Author(s):  
Claudia Candra Setyaningrum ◽  
Kholisoh Hayati ◽  
Siti Fatimah

Limbah nata de coco merupakan nata yang tidak dapat dijadikan sebagai produk setelah proses sortasi sehingga menghasilkan limbah padat dan jarang dimanfaatkan. Kandungan selulosa pada limbah padat nata de coco sebesar 42,57%. Tujuan penelitian ini membuat plastik biodegradable dengan hasil limbah nata de coco dengan penambahan plasticizer. Metode yang digunakan pada pembuatan plastik biodegradable ini adalah metode inversi fasa dengan variasi berat selulosa 2%; 2,5%; dan 3% (b/v), variasi volume gliserol sebesar 2%, 3%, dan 5% (v/v), dan penambahan kitosan sebagai penguat. Karakteristik pastik biodegradable diuji menggunakan UTM (Universal Testing Machine) dan FTIR (Fourier-Transform Infrared Spectroscopy). Plastik biodegradable yang dihasilkan dari berbagai perbandingan berat selulosa dan volume gliserol memiliki karakteristik yang berbeda-beda. Plastik biodegradable dengan karakteristik optimal memiliki nilai kuat tarik optimal sebesar 4,34 MPa, nilai elongasi optimal sebesar 4,44% dan nilai ketahanan air optimal sebesar 65,20%. Pada analisis gugus fungsi menggunakan FTIR menunjukkan tidak ditemukan adanya gugus fungsi baru dalam plastik biodegradable selain gugus fungsi bahan pembentuknya. Pada uji biodegradabilitas, diperoleh nilai biodegradabilitas sebesar 80% – 100% setelah ditimbun di dalam tanah selama 14 hari.Nata de coco waste is nata that cannot be used as a product after the sorting process so that it produces solid waste and is rarely utilized. The cellulose content in nata de coco solid waste is 42.57%, the purpose of this study is to make biodegradable plastic with the results of nata de coco waste by adding plasticizers. The method used in the manufacture of biodegradable plastics is the phase inversion method with cellulose weight variation; 2%; 2.5%; and 3% (w / v), variations in the volume of glycerol by 2%, 3%, and 5% (v/v), and the addition of chitosan as an amplifier. The biodegradable plastic characteristics were tested using UTM (Universal Testing Machine) and FTIR (Fourier-Transform Infrared Spectroscopy). Biodegradable plastics that are produced from various weight cellulose and glycerol volume ratios have different characteristics. Biodegradable plastic with optimal characteristics has an optimal tensile strength value of 4.34 MPa, optimal elongation value of 4.44% and an optimal water resistance value of 65.20%. In the analysis of functional groups (FTIR) no new functional groups were found in biodegradable plastics in addition to the functional groups forming materials. In the biodegradability test, a biodegradability value of 80% - 100% is obtained after being buried in the ground for 14 days.


Author(s):  
A ANTONY LAWRENCE ◽  
J THOMAS JOSEPH PRAKASH

Objective: The present study was to synthesize nanoparticles using Manilkara hexandra stem bark extract its characterization and evaluating it by an antimicrobial and antioxidant assay. Methods: Manilkara hexandra stem bark silver nanoparticles (MHSB-AgNPs) was done by mixing silver nitrate (1 mmol) and aqueous stem bark extract and it was analyzed by UV-Visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), Zeta potential, Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive Spectroscopy (EDAX), Thermogravimetry/Differential Thermal Analysis (TG/DTA) and Differential scanning calorimetry (DSC). The antibacterial assay was done by a well diffusion method and also examined for antifungal assay was done by disk diffusion method and antioxidant potential Diphenyl-1-picryl hydrazyl (DPPH method) Results: Manilkara hexandra stem bark silver nanoparticles (MHSB-AgNPs) is characterized by various techniques such as UV-visible absorption spectrum ranges from 430 nm to 440 nm indicate silver nanoparticles. The Fourier Transform Infrared Spectroscopy consists of biomolecules acts as capping agent to form silver nanoparticles. Field Emission Scanning Electron Microscopy shows particle size ranges from 15 nm to 50 nm. Energy Dispersive Spectroscopy shows the presence of Silver. X-ray Diffraction corresponds to face-centered lattice planes (111), (200), (220) and (311). Dynamic Light Scattering show the range of 68 nm and Zeta potential show the negative value of-17 nm which has high stability. Silver nanoparticles is also examined by Thermogravimetry/Differential Thermal Analysis (TG/DTA) and Differential scanning calorimetry (DSC) this project the thermal stability of the nanoparticles. The aqueous stem bark is also examined by UV-visible absorption spectrum, Fourier Transform Infrared Spectroscopy (FTIR), and Gas Chromatography-Mass Spectrometry (GCMS). In GCMS 20 compounds were identified. Silver nanoparticles show high zone of inhibition in antimicrobial assays and act as a good antioxidant agent. Conclusion: It is eco-friendly, non-toxic, and it’s easy to synthesis and it shows good result in an antimicrobial and antioxidant assay can be applied in a pharmaceutical application.


2020 ◽  
Vol 981 ◽  
pp. 98-103
Author(s):  
Mona Alis Md. Yasser ◽  
Zaidi Embong ◽  
Erween Abdul Rahim ◽  
Amiril Sahab Abdullah Sani ◽  
Kamaruddin Kamdani

This study was conducted to investigate the efficiency of Minimum Quantity Lubrication (MQL) technique by using Modified Jatropha Oil (MJO) bio-based lubricant with the presence of 10% Ammonium Ionic Liquid (MJO+AIL10%) and 1% Phosphonium Ionic Liquid (MJO+PIL1%) additives respectively at various temperature of 200 °C, 300 °C and 400 °C heat treatment to determine the ability to exhibit corrosion and wear throughout the process. Fourier-Transform Infrared Spectroscopy (FTIR) analysis revealed prominent peaks of functional groups in these bio-lubricants; esters (C-O) and (C=O), alkanes (C-H), hydroxide (O-H), and nitrile groups deposited on the cutting tool surface. Initially, nitrile group is detected on cutting tool surface without lubricants at 2200 to 2300 absorption band reduced to lower intensity and most likely concealed by MJO+AIL10% compared to MJO+PIL1% where the nitrile group remains reflected in FTIR spectrum. In this work, it is proved that MJO+AIL10% has higher viscosity as compared to MJO+PIL1%. in the context of functional groups and supported the previous study on MJO+AIL10% as corrosion inhibitor.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253390
Author(s):  
Uzma Younis ◽  
Ashfaq Ahmad Rahi ◽  
Subhan Danish ◽  
Muhammad Arif Ali ◽  
Niaz Ahmed ◽  
...  

Fourier transform infrared spectroscopy (FTIR) spectroscopy detects functional groups such as vibrational bands like N-H, O-H, C-H, C = O (ester, amine, ketone, aldehyde), C = C, C = N (vibrational modes of a tetrapyrrole ring) and simply C = N. The FTIR of these bands is fundamental to the investigation of the effect of biochar (BC) treatment on structural changes in the chlorophyll molecules of both plants that were tested. For this, dried leaf of Spinacia oleracia (spinach) and Trigonella corniculata (fenugreek) were selected for FTIR spectral study of chlorophyll associated functional groups. The study’s primary goal was to investigate the silent features of infrared (IR) spectra of dried leave samples. The data obtained from the current study also shows that leaf chlorophyll can mask or suppress other molecules’ FITR bands, including proteins. In addition, the C = O bands with Mg and the C9 ketonic group of chlorophyll are observed as peaks at1600 (0%BC), 1650 (3%BC) and 1640, or near to1700 (5%BC) in spinach samples. In fenugreek, additional effects are observed in the FTIR spectra of chlorophyll at the major groups of C = C, C = O and C9 of the ketonic groups, and the vibrational bands are more evident at C-H and N-H of the tetrapyrrole ring. It is concluded that C-N bands are more visible in 5% BC treated spinach and fenugreek than in all other treatments. These types of spectra are useful in detecting changes or visibility of functional groups, which are very helpful in supporting biochemical data such as an increase in protein can be detected by more visibility of C-N bands in FTIR spectra.


Author(s):  
Logeshwaran.V, Sabarinath.K, Ishwarya.R Sandhiya.S, Kousalya.N and Arun. P

India generates nearly 26,000 a lot of plastics on a daily basis. These plastics pollute the water and soil. The solid plastic wastes incinerated by the municipal agency pollute the air. Consistent with Central Pollution panel 94% of the plastics are thermoplastics or recyclable materials like PET (polyethylene terephthalate) and PVC (Polyvinyl Chloride)The purpose of bioplastic production is an alternate for synthetic plastic. The starch may is a natural biopolymer. Cassava is employed to provide the bioplastic by using glycerol plasticizer. Perform Fourier-transform infrared spectroscopy ( FTIR) for functional groups present within the bioplastic And analysis of degradation potential of developed bioplastic.


Sign in / Sign up

Export Citation Format

Share Document