High-Temperature Behavior of Grain Boundaries from Embedded Atom Method Molecular Dynamics Simulation

1988 ◽  
Vol 141 ◽  
Author(s):  
J. F. Lutsko ◽  
D. Wolf ◽  
S. R. Phillpot

AbstractThe behavior of a metallic grain boundary at high temperatures is studied using an embedded atom potential. A recently developed molecular dynamics code is used which allows the simulation of an isolated grain boundary at temperatures as high as the bulk melting point. The stability of the boundary below the melting point is studied and compared with earlier investigations which have suggested the existence of a “premelting“ transition. It is found that the boundary migrates at high temperature but remains well defined up to the bulk melting point. In contrast to simulations of ideal crystals, it was not possible to superheat the grain boundary due to the nucleation of bulk melting at the boundary.

Author(s):  
Y. H. Park ◽  
J. Tang

This paper describes the calculation of material properties of copper (Cu) using the molecular dynamics method. Vacancy formation energy, bulk modulus, surface energy and melting point are calculated using different potentials such as the Morse potential and Embedded Atom Method (EAM). Results obtained from different potentials are discussed and compared with experimental results.


1988 ◽  
Vol 100 ◽  
Author(s):  
Davy Y. Lo ◽  
Tom A. Tombrello ◽  
Mark H. Shapiro ◽  
Don E. Harrison

ABSTRACTMany-body forces obtained by the Embedded-Atom Method (EAM) [41 are incorporated into the description of low energy collisions and surface ejection processes in molecular dynamics simulations of sputtering from metal targets. Bombardments of small, single crystal Cu targets (400–500 atoms) in three different orientations ({100}, {110}, {111}) by 5 keV Ar+ ions have been simulated. The results are compared to simulations using purely pair-wise additive interactions. Significant differences in the spectra of ejected atoms are found.


2016 ◽  
Vol 683 ◽  
pp. 626-631 ◽  
Author(s):  
Ivan Konovalenko ◽  
Igor S. Konovalenko ◽  
Andrey Dmitriev ◽  
Serguey Psakhie ◽  
Evgeny A. Kolubaev

Mass transfer has been studied at atomic scale by molecular dynamics simulation of friction stir welding and vibration-assisted friction stir welding using the modified embedded atom potential. It was shown that increasing the velocity movement and decreasing the angle velocity of the tool reduce the penetration depth of atoms into the opposite crystallite in the connected pair of metals. It was shown also that increasing the amplitude of vibrations applied to the friction stir welding tool results in increasing the interpenetration of atoms belonging to the crystallites joined


2013 ◽  
Vol 643 ◽  
pp. 116-119
Author(s):  
Teng Fang ◽  
Li Wang ◽  
Yu Qi

Molecular dynamics simulation has been performed to explore the thermodynamics and dynamics properties of liquid Cu-Ni alloy based upon developed embedded atom methods (EAM), namely due to G. Bonny. The calculated liquid density shows that the potential underestimates the measured atomic density for Ni-rich composition. The calculated mixing enthalpy predicts the potential underestimates the mixing enthalpy when the concentration of Ni is increased beyond roughly 30 at. %. We make a conclusion from the fact that the G. Bonny’s model is not full perfect in describing the density and mixing enthalpy of Cu-Ni melts at the Ni-rich composition.


NANO ◽  
2012 ◽  
Vol 07 (06) ◽  
pp. 1250047 ◽  
Author(s):  
YINGJIE ZHANG ◽  
YONGQIANG LI ◽  
XUYANG XIAO ◽  
YUNHUI YAN

Atomic segregation in bimetallic clusters can influence the surface constituent and be used to affect the frozen structure. In this study, molecular dynamics simulation with an embedded atom method was used to study the frozen structures of (CoCu)561 clusters with different Co contents. It is found that the clusters can freeze to form icosahedron, truncated octahedron, decahedron or hcp with the change of Co contents. In these geometries, the structure of the lowest energy state is hcp, then in turn decahedron and truncated octahedron. The frozen structures are related to the release of excess energy, while the released excess energy was affected by the amount of segregated Cu atoms. This means that the atomic segregation can be used to tune the structures of bimetallic clusters.


2019 ◽  
Vol 27 (2) ◽  
pp. 61-64
Author(s):  
O. I. Kushnerov

Molecular dynamics simulation of the solidification behavior of AlCoCuFeNi nanowire was carried out basing on the embedded atom potential with different cooling rates (1∙1011 , 1∙1012, and 1∙1013 K/s). To simulate an infinite nanowire, a periodical boundary condition along the nanowire axis direction was applied. The crystallization of the nanowire was characterized by studying the temperature dependence of the potential energy. The adaptive common neighbor analysis (CNA) was performed and the radial distribution function (RDF) was calculated to determine the structure and lattice parameters of phases of the AlCoCuFeNi nanowire. It has been shown that the final structure of investigated nanoparticle changes from amorphous to crystalline with decreasing of the rate of cooling.


Sign in / Sign up

Export Citation Format

Share Document