Growth and Characterization of Single Crystal Epitaxial CoGa on MBE Grown III-V Semiconductors

1988 ◽  
Vol 144 ◽  
Author(s):  
K. C. Garrison ◽  
C. J. Palmstrøm ◽  
R. A. Bartynski

ABSTRACTWe have demonstrated growth of high quality single crystal CoGa films on Ga1−xAlxAs. These films were fabricated in-situ by codeposition of Co and Ga on MBE grown Ga1−xAlxAs(100) surfaces. The elemental composition of the films was determined using Rutherford Backscattering (RBS) and in-situ Auger analysis. The structural quality of the films' surfaces was studied using RHEED (during deposition) and LEED (post deposition). RBS channeling was used to determine the bulk crystalline quality of these films.For ∼500 Å CoGa films grown at ∼450°C substrate temperature, channeling data showed good quality epitaxial single crystals [χmin ∼7%] with minimal dechanneling at the interface.

2006 ◽  
Vol 527-529 ◽  
pp. 99-102 ◽  
Author(s):  
Laurence Latu-Romain ◽  
Didier Chaussende ◽  
Carole Balloud ◽  
Sandrine Juillaguet ◽  
L. Rapenne ◽  
...  

Because of the formation of DPB (Double Positioning Boundary) when starting from a hexagonal <0001> seed, DPB-free 3C-SiC single crystals have never been reported up to now. In a recent work we showed that, using adapted nucleation conditions, one could grow thick 3C-SiC single crystal almost free of DPB [1]. In this work we present the results of a multi-scale investigation of such crystals. Using birefringence microscopy, EBSD and HR-TEM, we find evidence of a continuous improvement of the crystal quality with increasing thickness in the most defected area, at the sample periphery. On the contrary, in the large DPB-free area, the SF density remains rather constant from the interface to the surface. The LTPL spectra collected at 5K on the upper part of samples present a nice resolution of multiple bound exciton features (up to m=5) which clearly shows the high (electronic) quality of our 3C-SiC material.


2021 ◽  
Vol 54 (3) ◽  
pp. 957-962
Author(s):  
Zihao Liu ◽  
Harry Lane ◽  
Christopher D. Frost ◽  
Russell A. Ewings ◽  
J. Paul Attfield ◽  
...  

An instrument and software algorithm are described for the purpose of characterization of large single crystals at the Alignment Facility of the ISIS spallation neutron source. A method for both characterizing the quality of the sample and aligning it in a particular scattering plane is introduced. A software package written for this instrument is presented, and its utility is demonstrated by way of an example of the structural characterization of large single crystals of Pb(Mg1/3Nb2/3)O3. Extensions and modifications of characterization instruments for future improved beamlines are suggested. It is hoped that this software will be used by the neutron community for pre-characterizing large single crystals for spectroscopy experiments and that in the future such a facility will be included as part of the spectroscopy suite at other spallation neutron sources.


2010 ◽  
Vol 645-648 ◽  
pp. 55-58 ◽  
Author(s):  
Irina G. Galben-Sandulache ◽  
Guoli L. Sun ◽  
Jean Marc Dedulle ◽  
Thierry Ouisse ◽  
Roland Madar ◽  
...  

The control of the nucleation step is a critical issue for a future development of 3C-SiC bulk growth. The possibility to get very high quality 3C-SiC single crystal through self-nucleation on graphite was already demonstrated but the large number of nuclei limits the growth of only one crystal. In this study, we have investigated different configurations that help improving the nucleation step. For that, the “necking” stage, well established in Bridgman or Czochralski growth processes, has been successfully applied to the growth of 3C-SiC with the CF-PVT technique. This has allowed getting only one 3C-SiC crystal. The enlarged parts, after having passed the neck, are of high structural quality.


Author(s):  
Arash Alex Mazhari ◽  
Randall Ticknor ◽  
Sean Swei ◽  
Stanley Krzesniak ◽  
Mircea Teodorescu

AbstractThe sensitivity of additive manufacturing (AM) to the variability of feedstock quality, machine calibration, and accuracy drives the need for frequent characterization of fabricated objects for a robust material process. The constant testing is fiscally and logistically intensive, often requiring coupons that are manufactured and tested in independent facilities. As a step toward integrating testing and characterization into the AM process while reducing cost, we propose the automated testing and characterization of AM (ATCAM). ATCAM is configured for fused deposition modeling (FDM) and introduces the concept of dynamic coupons to generate large quantities of basic AM samples. An in situ actuator is printed on the build surface to deploy coupons through impact, which is sensed by a load cell system utilizing machine learning (ML) to correlate AM data. We test ATCAM’s ability to distinguish the quality of three PLA feedstock at differing price points by generating and comparing 3000 dynamic coupons in 10 repetitions of 100 coupon cycles per material. ATCAM correlated the quality of each feedstock and visualized fatigue of in situ actuators over each testing cycle. Three ML algorithms were then compared, with Gradient Boost regression demonstrating a 71% correlation of dynamic coupons to their parent feedstock and provided confidence for the quality of AM data ATCAM generates.


1997 ◽  
Vol 07 (03n04) ◽  
pp. 265-275
Author(s):  
R. Q. Zhang ◽  
S. Yamamoto ◽  
Z. N. Dai ◽  
K. Narumi ◽  
A. Miyashita ◽  
...  

Natural FeTiO 3 (illuminate) and synthesized FeTiO 3, single crystals were characterized by Rutherford backscattering spectroscopy combined with channeling technique and particle-induced x-ray emission (RBS-C and PIXE). The results obtained by the ion beam analysis were supplemented by the x-ray diffraction analysis to identify the crystallographic phase. Oriented single crystals of synthesized FeTiO 3 were grown under the pressure control of CO 2 and H 2 mixture gas using a single-crystal floating zone technique. The crystal quality of synthesized FeTiO 3 single crystals could be improved by the thermal treatment but the exact pressure control is needed to avoid the precipitation of Fe 2 O 3 even during the annealing procedure. Natural FeTiO 3 contains several kinds of impurities such as Mn , Mg , Na and Si . The synthesized samples contain Al , Si and Na which are around 100 ppm level as impurities. The PBS-C results of the natural sample imply that Mn impurities occupy the Fe sublattice in FeTiO 3 or in mixed phase between ilmenite and hematite.


2006 ◽  
Vol 527-529 ◽  
pp. 299-302
Author(s):  
Hideki Shimizu ◽  
Yosuke Aoyama

3C-SiC films grown on carbonized Si (100) by plasma-assisted CVD have been investigated with systematic changes in flow rate of monosilane (SiH4) and propane (C3H8) as source gases. The deposition rate of the films increased monotonously and the microstructures of the films changed from 3C-SiC single crystal to 3C-SiC polycrystal with increasing flow rate of SiH4. Increasing C3H8 keeps single crystalline structure but results in contamination of α-W2C, which is a serious problem for the epitaxial growth. To obtain high quality 3C-SiC films, the effects of C3H8 on the microstructures of the films have been investigated by reducing the concentration of C3H8. Good quality 3C-SiC single crystal on Si (100) is grown at low net flow rate of C3H8 and SiH4, while 3C-SiC single crystal on Si (111) is grown at low net flow rate of C3H8 and high net flow rate of SiH4. It is expected that 3C-SiC epitaxial growth on Si (111) will take placed at a higher deposition rate and lower substrate temperature than that on Si (100).


2021 ◽  
pp. 117333
Author(s):  
Anja Weidner ◽  
Alexei Vinogradov ◽  
Malte Vollmer ◽  
Phillip Krooß ◽  
Mario J. Kriegel ◽  
...  

2019 ◽  
Vol 343 ◽  
pp. 445-453 ◽  
Author(s):  
Xiaojun Lu ◽  
Cong Liu ◽  
Weijie Zhu ◽  
Zhongpei Lu ◽  
Weili Li ◽  
...  
Keyword(s):  

1970 ◽  
Vol 33 (1) ◽  
pp. 47-54 ◽  
Author(s):  
S Ferdous ◽  
J Podder

Highly transparent and well faceted large size epsomite single crystals have been grown in pure form and doped with KCl from aqueous solutions by slow cooling and isothermal evaporation method. The optical quality of the epsomite improves on doping by KCl. Mass growth rates were found to increase with doping of lower concentrations of KCl and then decreases with the higher concentration of KCl. KCl doped epsomite crystal reveals that structures are slightly distorted due to adsorption of Cl- ion into the crystal lattice. DC conductivity along the growth axis for all of the grown crystals increases with temperature in the range of 25 to 70ºC and also increases with the KCl concentration. Dielectric constant is found to be almost independent of frequency up to range of 106Hz. The dielectric studies show the suitability of these grown crystals for optoelectronic applications. DOI: 10.3329/jbas.v33i1.2949 Journal of Bangladesh Academy of Sciences, Vol. 33, No. 1, 47-54, 2009


Sign in / Sign up

Export Citation Format

Share Document