Hetero-Epitaxial Growth of 3C-SiC on Silicon Substrates by Plasma Assisted CVD

2006 ◽  
Vol 527-529 ◽  
pp. 299-302
Author(s):  
Hideki Shimizu ◽  
Yosuke Aoyama

3C-SiC films grown on carbonized Si (100) by plasma-assisted CVD have been investigated with systematic changes in flow rate of monosilane (SiH4) and propane (C3H8) as source gases. The deposition rate of the films increased monotonously and the microstructures of the films changed from 3C-SiC single crystal to 3C-SiC polycrystal with increasing flow rate of SiH4. Increasing C3H8 keeps single crystalline structure but results in contamination of α-W2C, which is a serious problem for the epitaxial growth. To obtain high quality 3C-SiC films, the effects of C3H8 on the microstructures of the films have been investigated by reducing the concentration of C3H8. Good quality 3C-SiC single crystal on Si (100) is grown at low net flow rate of C3H8 and SiH4, while 3C-SiC single crystal on Si (111) is grown at low net flow rate of C3H8 and high net flow rate of SiH4. It is expected that 3C-SiC epitaxial growth on Si (111) will take placed at a higher deposition rate and lower substrate temperature than that on Si (100).

2005 ◽  
Vol 483-485 ◽  
pp. 209-212
Author(s):  
Hideki Shimizu ◽  
Kensaku Hisada ◽  
Yosuke Aoyama

Effects of the flow rate of C3H8 passed through hydrogen plasma on deposition rates and^microstructures of 3C-SiC films on Si (100) substrate were investigated by a reflection electron diffraction, an X-ray diffraction and an ellipsometric measurement. The deposition rate of the films increased independently of the flow rate of C3H8 with increasing the flow rate of SiH4. The films grown with increasing the flow rate of C3H8 kept single crystalline structure even at high flow rate of SiH4. Hydrogen radicals generated from C3H8 decomposition by plasma increase with increasing the flow rate of C3H8, and play important rolls to keep epitaxial growth.


2001 ◽  
Vol 664 ◽  
Author(s):  
S.R. Sheng ◽  
R. Braunstein ◽  
B.P. Nelson ◽  
Y. Xu

ABSTRACTThe electronic transport properties of high deposition rate a-Si:H films prepared by HWCVD have been investigated in detail by employing the microwave photomixing technique. The high deposition rates (up to 1 µm/min.) were achieved by adding a second filament, increasing deposition pressure, silane flow rate, and decreasing filament-to-substrate distance. The effect of the deposition rate on the resultant film properties with respect to the substrate temperature, deposition pressure and silane flow rate was studied. It was found that the film transport properties do not change monotonically with increasing deposition rate. The photoconductivity peaks at ∼70-90 Å/s, where both the drift mobility and lifetime peak, consistent with the deposition rate dependence of the range and depth of the potential fluctuations. High quality, such as a photoconductivity-to-dark-conductivity ratio of ∼105 and nearly constant low charged defect density, can be maintained at deposition rates up to ∼150 Å/s, beyond which the film properties deteriorate rapidly as a result of an enhanced effect of the long-range potential fluctuations due to a considerable increase in the concentration of the charged defects. Our present results indicate that medium silane flow rate, low pressure, and higher substrate temperature are generally required to maintain high quality films at high deposition rates.


1990 ◽  
Vol 187 ◽  
Author(s):  
C. S. Chang ◽  
J. C. Wang ◽  
L. C. Kuo

AbstractAn electron beam evaporation method has been used to prepare tin doped indium oxide (ITO) films with 95 wt.% In2O3 and 5 wt.% SnO2 in an oxygen atmosphere. It was found that the deposition rate and oxygen pressure strongly influence the film properties when the substrate temperature was lower than 200°C. In an optimal condition, highly transparent (transmittance ˜ 90% at wavelength 570 nm) and conductive (resistivity – 3×10−4Ω-cm) films of thickness around 2000 Å at substrate temperature as low as 180°C can be obtained.


1988 ◽  
Vol 144 ◽  
Author(s):  
K. C. Garrison ◽  
C. J. Palmstrøm ◽  
R. A. Bartynski

ABSTRACTWe have demonstrated growth of high quality single crystal CoGa films on Ga1−xAlxAs. These films were fabricated in-situ by codeposition of Co and Ga on MBE grown Ga1−xAlxAs(100) surfaces. The elemental composition of the films was determined using Rutherford Backscattering (RBS) and in-situ Auger analysis. The structural quality of the films' surfaces was studied using RHEED (during deposition) and LEED (post deposition). RBS channeling was used to determine the bulk crystalline quality of these films.For ∼500 Å CoGa films grown at ∼450°C substrate temperature, channeling data showed good quality epitaxial single crystals [χmin ∼7%] with minimal dechanneling at the interface.


1986 ◽  
Vol 60 (4) ◽  
pp. 1440-1446 ◽  
Author(s):  
Gin‐ichiro Oya ◽  
Masanori Koishi ◽  
Yasuji Sawada

1987 ◽  
Vol 97 ◽  
Author(s):  
J. Anthony Powell

ABSTRACTSilicon carbide (SiC), with a favorable combination of semiconducting and refractory properties, has long been a candidate for high temperature semiconductor applications. Research on processes for producing the needed large-area high quality single crystals has proceeded sporadically for many years. Two characteristics of SiC have aggravated the problem of its crystal growth. First, it cannot be melted at any reasonable pressure, and second, it forms many different crystalline structures, called polytypes. Recent progress in the development of two crystal growth processes will be described. These processes are the modified Lely process for the growth of the alpha polytypes (e.g. 6H SiC), and a process for the epitaxial growth of the beta polytype (i.e. 3C or cubic SiC) on single crystal silicon substrates. A discussion of the semiconducting qualities of crystals grown by various techniques will also be included.


2014 ◽  
Vol 1634 ◽  
Author(s):  
Timothy A. Grotjohn ◽  
Dzung T. Tran ◽  
M. Kagan Yaran ◽  
Thomas Schuelke

ABSTRACTPhosphorus is incorporated into single crystal diamond during epitaxial growth at higher concentrations on the (111) crystallographic surface than on the (001) crystallographic surface. To form n+-type regions in diamond for semiconductor devices it is beneficial to deposit on the (111) surface. However, diamond deposition is faster and of higher quality on the (001) surface. A preferential etch method is described that forms inverted pyramids on the (001) surface of a substrate diamond crystal, which opens (111) faces for improved phosphorus incorporation. The preferential etching occurs on the surface in regions where a nickel film is deposited. The etching is performed in a microwave generated hydrogen plasma operating at 160 Torr with the substrate temperature in the range of 800-950 °C. The epitaxial growth of diamond with high phosphorus concentrations exceeding 1020 cm-3 is performed using a microwave plasma-assisted chemical vapor deposition process. Successful growth conditions were achieved with a feedgas mixture of 0.25% methane, 500 ppm phosphine and hydrogen at a pressure of 160 Torr and a substrate temperature of 950-1000°C. The room temperature resistivity of the phosphorus-doped diamond is 120-150 Ω-cm and the activation energy is 0.027 eV.


2012 ◽  
Vol 717-720 ◽  
pp. 181-184
Author(s):  
Hideki Shimizu ◽  
Takashi Watanabe

To demonstrate the formation of 3C-SiC film on Si (111) at low substrate temperature, the effects of C3H8 on the crystalline quality of the 3C-SiC films on Si (111) have been investigated by changing the flow rate of C3H8 at the substrate temperature of 950 °C. The crystalline quality has been investigated by transmission electron microscope and X-ray diffraction. 3C-SiC is epitaxially grown on Si(111) and the 3C-SiC films are in either near single crystalline or highly oriented form with stacking faults and twin. It is expected that the film with good crystalline quality may grow at around 2.5 in the ratio of the flow rate of C3H8 to SiH4 and any microstructures of 3C-SiC films on Si (111) can be controlled by accurately controlling the ratio of C/Si.


Nanoscale ◽  
2016 ◽  
Vol 8 (19) ◽  
pp. 10291-10297 ◽  
Author(s):  
Hyoban Lee ◽  
Youngdong Yoo ◽  
Taejoon Kang ◽  
Jiyoung Lee ◽  
Eungwang Kim ◽  
...  

Vertical Ni NWs, inclined Ni NWs, and vertical Ni nanoplates were epitaxially grown on sapphire substrates with a single-crystalline structure in the vapor phase. The morphology and growth direction of Ni nanostructures are determined by Ni seed crystals.


Sign in / Sign up

Export Citation Format

Share Document